低温プラズマ科学研究センター教員公募
名古屋大学低温プラズマ科学研究センター(工学部電気電子情報工学科および工学研究科電子工学専攻兼担)では教員(助教1名)を公募しております。(学内向け情報にも掲載しております。)
ご応募をお待ちしております。
電気工学専攻・早川研究室では,地球温暖化ガス削減に向けた真空電力機器の高電圧化技術を開発しています。
高電圧電力機器における地球温暖化ガス削減のため,真空遮断器で電流遮断機能を担う真空インタラプタの高電圧化が期待されています。産業的に用いられている電極間への電圧印加による放電で絶縁上の弱点を除去する手法(コンディショニング)において経験的に決められていた電圧印加条件について,対向電極材料の溶融・付着メカニズムの観点から放電電荷量で最適化できることを見出しました。本研究成果は,2023年12月発行の「IEEE Transactions on Dielectrics and Electrical Insulation」誌に掲載されました。
岩田(哲)研究室では、共通鍵暗号技術に対する量子攻撃の開発に取り組んでいます。
岩田(哲)研究室では、共通鍵暗号技術に対して、量子アルゴリズムを用いた量子攻撃の開発に取り組んでいます。左図はブロック暗号の代表的な構造の一つであるFeistel構造です。4回繰り返しのFeistel構造は、量子選択暗号文攻撃という攻撃を考えると、中図のような周期を持つ関数と見なすことができ、周期発見量子アルゴリズムを用いることで効率的な攻撃が可能であることを示しました。右図はSum of Even-Mansour方式という擬似ランダム関数です。古典的な攻撃に対しては数学的な安全性証明が知られていますが、量子攻撃により効率的に攻撃可能であることを示しました。
このような攻撃手法の開発は、量子攻撃に対して安全な共通鍵暗号技術の設計に役立てられます。
人事異動
田中研究室ではプラズマ活性溶液によるがん治療、再生医療、農水産業応用研究をなど進めています。
電子工学専攻の田中研究室では、プラズマ照射した溶液(プラズマ活性溶液)による抗腫瘍効果を見出し、医学部や農学部と共同で、作用機序の解明、安全性・有効性の検証、実用化(臨床応用)に向けた研究を行っております。
情報通信工学専攻 長谷川・森研究室では、マルチバンド伝送に対応する光クロスコネクトノードの実証実験を行い、2000kmを超える伝送に成功しました。
光ファイバ通信において、従来用いられているC帯と呼ばれる周波数帯を使用した伝送では容量が限界に達しつつあることから、L帯やS帯を追加的に用いるマルチバンド通信が注目され盛んに研究されています。しかし通信装置(光クロスコネクトノード)では異なる周波数帯向けのデバイスをそれぞれ用意する必要があり、構造が複雑になりその実現が難しくなります。そこで、光信号を帯域毎にグループ化して統合し、経路を制御する新たな装置構成を考案し、プロトタイプを開発して伝送実験を行いました。このプロトタイプは16入力16出力の規模を持ち、実証した総スループットは300Tbpsを超えます。異なる周波数帯域に分布した光信号を、それぞれ2000+km以上伝送できることを確認しました。この結果は毎年北米で開催される最高峰の国際会議OFC (Optical Fiber Communication Conference) にて発表されました。
人事異動
低温プラズマ科学研究センター 教員公募
名古屋大学低温プラズマ科学研究センター(工学部電気電子情報工学科および工学研究科電子工学専攻兼担)では教員(准教授1名)を公募しております。(学内向け情報にも掲載しております。)
ご応募をお待ちしております。
液中プラズマによる3次元複雑形状表面へのナノグラフェン複合材料に関する研究
電子工学専攻・石川研究室(プラズマナノプロセス科学グループ)のデラ・ベガ・シャンレーン・デラ・クルズ(博士学生)及び堤隆嘉講師,堀勝教授らは,エタノール液の気液界面に高密度プラズマを発生させることで,液中に浸漬した3次元複雑形状(3D構造)をもつスポンジ状ニッケルの全面にナノグラフェンを堆積する新たな手法を開発しました。今回の研究成果によって,機能性をもつ3次元構造体を崩さずに,その3D構造金属材料の表面に良質のグラフェン材料を大気圧下,室温で堆積できる新たな低温プラズマプロセスの開発に成功しています。
高周波電波の究極的低損失伝送回路を実現 ~超伝導体でBeyond 5G/6G通信システム実現に寄与~
国立大学法人東海国立大学機構 名古屋大学宇宙地球環境研究所の中島 拓 助教、鈴木 和司 技術補佐員(研究支援推進員)、自然科学研究機構国立天文台、株式会社川島製作所、及び国立研究開発法人情報通信研究機構(NICT)は、共同で、超伝導金属であるニオブを材料に用いたミリ波電波用の導波管を開発し、超伝導状態にある導波管の伝送損失が他の一般的な金属材料の導波管に比べて、桁違いに小さいことを発見しました。
超伝導体を材料とする電波の伝送路は、同軸ケーブルや平面ストリップ線路などでは実用化されていますが、これらは比較的周波数の低い電波の伝送に限られています。次世代の通信規格であるBeyond 5G/6Gで利用が見込まれる100 GHzを超えるようなミリ波・サブミリ波・テラヘルツ波帯では、導波管と呼ばれる金属管による立体伝送路が使われますが、「超伝導導波管」の研究はこれまでほとんど行われていませんでした。理論的な先行研究では、超伝導による効果が逆に伝送損失を大きくしてしまい、実用的なものにはならないという予想もありましたが、本研究において実際に超伝導導波管を製作して伝送損失を測定した結果は、その予想を大きく覆すものでした。
本研究の成果を応用すると、既に導波管回路が利用されている宇宙観測用の電波望遠鏡や地球大気の環境計測装置などで、これまでにない超高感度な受信システムが実現できます。さらに、100 GHzを超える周波数帯を用いるBeyond 5G/6G通信システムでも導波管が使用される可能性が高く、高効率な高周波情報通信の実現が期待されます。
本研究成果は、2023年8月8日付Journal of Physics誌「Conference Series Volume 2545」に掲載されました。
名古屋大学オープンキャンパス
8月7日(月)に開催された名古屋大学オープンキャンパスにおいて,工学部電気電子情報工学科は,学科紹介・模擬講義・研究室見学を実施し,全国各地から高校生やその保護者など200名以上にご参加いただきました.ありがとうございました.見学できなかった研究室の様子など,ここに掲載していますので,ご覧ください.
人事異動
横水研究室では、DC限流ヒューズによる高遮断性能を実現するアーク消弧材に関する研究を進めています。
電気工学専攻の横水研究室では,電気自動車用の限流ヒューズにおけるDC遮断性能の向上方法の提案とそのメカニズム解明に関する研究を実施しています。その一環として,アーク消弧媒体SiO2粉末に加えて,silicone(C2H6SiO)材を銅エレメント周囲に追加配列することによって,SiO2単独の場合よりも,DC遮断プロセスに形成される過渡アークの電気抵抗を約2倍に上昇でき,その結果,DC1000 Aの限流遮断に要する時間を20–40%短縮できることを明らかにしました。さらに,この現象メカニズムを高温SiO2/C2H6SiO分解蒸気の輸送特性から解き明かしました。本研究は自動車ヒューズ製造会社との共同研究として行ってきたものです。本研究成果は,2023年8月29日付で「Journal of Physics D: Applied Physics」誌に掲載されました。また,量子化学計算を併用した高温ガスの物性解析にも取り組んでおり,成果の一部がこちらに掲載されています。昨年度からは,未来材料・システム研究所 エネルギーシステム(中部電力)寄附研究部門 岩田(幹)研究室との共同研究として進めています。
生細胞の表面構造をナノスケールで直接可視化 ~エクソソームなど細胞間コミュニケーションの理解に貢献~
国立大学法人東海国立大学機構 名古屋大学大学院工学研究科/金沢大学ナノ生命科学研究所(WPI-NanoLSI)の高橋康史教授,WPI-NanoLSIの華山力成教授,福間剛士教授,および海外主任研究者(PI)で英国・インペリアル・カレッジ・ロンドンのユリ・コルチェフ教授らの共同研究グループは,生細胞表面の構造をナノスケールのレベルで可視化する技術を確立し,細胞外物質の取り込み過程や,細胞間コミュニケーションに関与するエクソソームの可視化に成功しました。
ウィルスの細胞内への侵入や,細胞内外との物質のやり取りを観察するためには,現状の顕微鏡技術の空間分解能では不十分です。そのため,超解像度顕微鏡など高分解能化が進められていますが,依然として空間分解能に課題を抱えています。細胞を生きたまま直接可視化するライブセルイメージングは,細胞のダイナミックな動きを理解することのできる方法です。走査型イオンコンダクタンス顕微鏡(SICM)は,細胞のナノ構造を侵襲することなく生きた状態でライブイメージングを行うことができます。しかしながら,SICMの解像度向上に不可欠なガラスナノピペットの微細化が困難なため,これまではその高度な技術を持つ限られた研究グループのみが超解像度のイメージングを達成してきました。本研究では,このような細胞表面のナノスケールの構造変化を再現性良く観察するため,キーとなる微細なガラスナノピペットの作製法を確立しました。さらに,高解像度SICMにより,細胞外の物質を取り込む過程の1つであるエンドサイトーシスを連続的に可視化することや,細胞外へ放出されるエクソソームの動きを捉えることに成功しました。
本研究成果は,2023年8月20日付(米国東部時間)でアメリカ化学雑誌「Analytical Chemistry」のオンライン版に掲載されました。
情報・通信工学専攻・藤井研究室では位相回復に基づくホログラフィの研究を行っています。
ホログラフィは三次元物体からの光の波面情報を再生するディスプレイ技術です。波面の振幅と位相が既知であれば、三次元物体を空間中に再生することが可能です。しかし、波面の記録時に位相の情報は失われてしまいます。藤井研究室では、波面の振幅から位相を復元する位相回復に基づくホログラフィ技術を研究しています。
左:光学装置、中央:既存手法の再生像、右:提案手法の再生像
塩川和夫教授がSCOSTEP会長に再任されました。
2023年7月14日にドイツのベルリンで開催されたSCOSTEP(Scientific Committee on Solar-Terrestrial Physics、太陽地球系物理学科学委員会)の総会で、塩川和夫教授(電気工学専攻)が、SCOSTEPのPresidentに再任されました。任期はこれまでの4年間に加えて、2023年7月-2027年7月の4年間です。副会長はSpainのBernd Funke博士です。SCOSTEPは国際学術会議(International Science Council)傘下の国際組織で、日本学術会議を含めて34か国・地域の学術会議や宇宙機関がメンバーとして出資しており、登録されている研究者は70か国以上、約2600人です。SCOSTEPはSTEP(1990-1994),CAWSES-I,-II(1990-1994),VarSITI(2014-2018),PRESTO(2020-2024)など、太陽地球系科学に関する国際共同プログラムを提案・推進するとともに、大学院生のスカラーシップや国際スクールなどの人材育成を行っています。また、国連宇宙平和利用委員会の恒久オブザーバーです。
二酸化炭素の還元触媒について、構造と電気化学特性の関係をナノスケールで解明 ~副反応を抑えた二酸化炭素還元のための触媒開発に貢献~
国立大学法人東海国立大学機構 名古屋大学大学院工学研究科の河邉 佑典 博士課程後期学生、同大学院工学研究科/国立大学法人金沢大学ナノ生命科学研究所(WPI-NanoLSI)の高橋 康史 教授らの研究グループは、筑波大学の伊藤 良一 准教授、堀 優太 助教との共同研究で、触媒表面で生じる二酸化炭素還元反応を、電気化学的にイメージングする技術を確立し、水素ガスなどの副生成物を抑え、化成品を効率的に生成する電解合成触媒の反応メカニズムの理解に成功しました。
再生可能エネルギーを活用した電気化学的な二酸化炭素の還元は、二酸化炭素を資源として化成品を電解合成できる有力なカーボンニュートラル技術の一つです。その一方で、化成品を電解合成できる触媒では、水素ガスなどの副生成物が生じてしまうという課題を抱えています。本研究は、効率的な化成品の電解合成に向けて、副生成物を抑えられる電解合成触媒の特徴の理解を目指しました。走査型電気化学セル顕微鏡(SECCM)を用いて触媒の幾何学構造と電気化学データを同時マッピング計測することで、幾何学構造と電気化学データが一対一で対応付けを実現させました。さらに、第一原理計算により触媒活性サイトにおける反応メカニズムをシミュレーションすることで、二酸化炭素の還元に必要な特徴を明らかにしました。
本研究成果は、2023年6月5日付アメリカ化学雑誌「ACS Nano」に掲載されました。
充放電中のイオンの濃度プロファイルを形状変化とともにナノスケールで可視化 ~デバイス材料の開発・オペレーション条件の最適化に貢献~
国立大学法人東海国立大学機構 名古屋大学大学院工学研究科/国立大学法人金沢大学ナノ生命科学研究所(WPI-NanoLSI)の高橋 康史 教授らの研究グループは、株式会社日立製作所の高松 大郊 主任研究員、金沢大学NanoLSIの福間 剛士 教授、NanoLSIの海外PIでインペリアル・カレッジ・ロンドン(イギリス)のユリ コルチェフ教授との共同研究で、リチウムイオン電池を駆動した際に、正極や負極の表面に生じる、イオンの濃度プロファイルの変化をナノスケールで捉える技術を開発しました。
本研究では、先端に半径50 nmの開口を有するガラスナノピペットを用いて、充放電中のイオン濃度の変化を、イオン電流の変化として局所的に計測する技術を開発しました。この手法は、ガラスナノピペットを特定の点において、その点の応答を捉えるだけでなく、走査型プローブ顕微鏡の位置制御技術を活用することで、3次元的なイオンの濃度プロファイルを、蓄電材料を駆動させた状態で評価することができます。実際に、リチウムイオン電池の負極に利用されるグラファイトについて、電位をスイープした際に生じるイオンの濃度変化を可視化することに成功しました。さらに、グラファイトの相転移に伴うナノスケールの体積変化を同時に捉えることに成功しました。この技術は、リチウムイオン電池のオペレーションや、セパレータや電池の構造の最適化に貢献できるだけでなく、腐食や触媒の評価にも活用することが期待できます。
本研究成果は、2023年2月27日付アメリカ化学雑誌「JACS Au」に掲載されました。
電気工学専攻・福塚研究室(電気エネルギー貯蔵工学研究グループ)では全固体リチウム二次電池の界面反応の解析を行っています。
電気自動車の本格的実用化に向けて全固体リチウム二次電池が期待されています。当研究室では黒鉛負極/固体電解質界面に注目して、モデル化により界面反応の活性化障壁が従来の液体電解質を用いたリチウムイオン電池と比べて低いことを明らかにしました。
人事異動
研究分野