OMAC: One-Key CBC MAC

February 25, 2003

Tetsu Iwata and Kaoru Kurosawa

Ibaraki University

Fast Software Encryption, FSE 2003, February 24–26, 2003, Lund, Sweden

Alice wishes to send Bob a message in such a way that Bob can be **certain** (with very high probability) that Alice was the **true originator** of the message.

MAC (Message Authentication Code)

What is a MAC?

Block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n$

Problems of CBC MAC

• does not allow messages of **arbitrary bit length**

(all messages must be a multiple of n bits)

• does not allow messages of **varying** lengths

(otherwise **insecure**)

Previous Works

- ANSI X9.19 (Optional Triple-DES)
- MacDES [Knudsen, Preneel]
- EMAC [Race Project]
 - (Analysis by [Petrank, Rackoff] and [Vaudenay])
- XCBC
 - TMAC

[Kurosawa, Iwata]

[Black, Rogaway]

XCBC (Black and Rogaway, Crypto '00)

Case
$$|M| = mn \ (m \ge 1)$$

XCBC (Black and Rogaway, Crypto '00)

Case
$$|M| \neq mn$$

Advantages of XCBC

- Correctly handles messages of **any** bit length
- Correctly handles messages of **varying** lengths

Disadvantage of XCBC

• **Three** keys $(k + 2n \text{ bits}), K_1, K_2, K_3.$

TMAC (Kurosawa and Iwata, RSA '03)

$(K_1, K_2, K_3) \rightarrow (K_1, K_2 \cdot \mathbf{u}, K_2)$

Two keys $(k + n \text{ bits}), K_1, K_2.$

Still not optimal

Our Proposal: OMAC-family

One key (k bits) K

(with **small** cost and **without** security loss)

- a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, (AES, Camellia, TDES, ...)
- an n-bit constant Cst, (arbitrarily)
- a hash function $H: \{0,1\}^n \times X \to \{0,1\}^n$,
- two distinct constants Cst_1 , $Cst_2 \in X$.

Conditions on H, Cst_1 and Cst_2

- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_1) = y\} \leq \epsilon_1 \cdot 2^n$
- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_2) = y\} \leq \epsilon_2 \cdot 2^n$
- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_1) \oplus H_L(\mathsf{Cst}_2) = y\} \leq \epsilon_3 \cdot 2^n$
- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_1) \oplus L = y\} \leq \epsilon_4 \cdot 2^n$
- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_2) \oplus L = y\} \leq \epsilon_5 \cdot 2^n$
- $\forall y, \#\{L \mid H_L(\mathsf{Cst}_1) \oplus H_L(\mathsf{Cst}_2) \oplus L = y\} \le \epsilon_6 \cdot 2^n$

OMAC-family: Set-up

Case
$$|M| = mn \ (m \ge 1)$$

OMAC-family

Case
$$|M| \neq mn$$

Security of OMAC-family

$$M_i \bigoplus_{K \to T_i} T_i = \text{OMAC-family}_K(M_i)$$

- \mathcal{A} forges if $T' = \text{OMAC-family}_K(M'), M' \neq M_i$
- $\operatorname{Adv}_{\operatorname{OMAC-family}_{K}}^{\operatorname{mac}}(\mathcal{A}) \stackrel{\operatorname{def}}{=} \Pr_{K}(\mathcal{A} \operatorname{forges})$

Suppose that E is a random permutation P. Let \mathcal{A} be an adversary which asks at most q queries, and each query is at most nm bits $(m \leq 2^n/4)$. Then $\operatorname{Adv}_{\operatorname{OMAC-family}_{P}}^{\operatorname{mac}}(\mathcal{A}) \leq \frac{q^{2}}{2} \cdot \left(\frac{7m^{2}+2}{2^{n}} + 3m^{2}\epsilon\right) + \frac{1}{2^{n}}$ where $\epsilon = \max\{\epsilon_1, \ldots, \epsilon_6\}.$

Theorem (Cont.)

- If $\epsilon_i \approx 2^{-n}$, then OMAC-family is secure up to the birthday paradox limit.
- When E is a real block cipher (AES, Camellia, TDES), $\operatorname{Adv}_{E}^{\operatorname{prp}}(\mathcal{B})$ is added to the above bound.

Block Cipher Security (PRP)

Enc. Oracle Random Perm. Oracle

$$\operatorname{Adv}_{E}^{\operatorname{prp}}(\mathcal{B}) \stackrel{\text{def}}{=} \left| \Pr_{K}(\mathcal{B}^{E_{K}} = 1) - \Pr_{P}(\mathcal{B}^{P} = 1) \right|$$

Examples of H, Cst_1 and Cst_2

Two Specifications: OMAC1, OMAC2

OMAC = OMAC1 and OMAC2

- $Cst = 0^n$,
- $H_L(x) = L \cdot x$

("." over $GF(2^n)$)

- $Cst_1 = u$,
- $Cst_2 = u^2$.

$$\epsilon_1 = \dots = \epsilon_6 = 2^{-n}$$

Case
$$|M| = mn \ (m \ge 1)$$

Case
$$|M| \neq mn$$

$L \cdot \mathbf{u} \text{ and } L \cdot \mathbf{u}^2$

$$L \cdot \mathbf{u} = \begin{cases} L \ll 1 & \text{if } L_{127} = 0, \\ (L \ll 1) \oplus 0^{120} 10000111 & \text{otherwise.} \end{cases}$$

$$(n = 128)$$

 $L \cdot \mathbf{u}^2 = (L \cdot \mathbf{u}) \cdot \mathbf{u}$ can be easily obtained from $L \cdot \mathbf{u}$.

• $Cst = 0^n$,

•
$$H_L(x) = L \cdot x$$
 ("." over $GF(2^n)$)

$$\epsilon_1 = \dots = \epsilon_6 = 2^{-n}$$

Case
$$|M| = mn \ (m \ge 1)$$

Case
$$|M| \neq mn$$

$$L \cdot u^{-1}$$

$L \cdot \mathbf{u}^{-1} = \begin{cases} L \gg 1 & \text{if } L_0 = 0, \\ (L \gg 1) \oplus 10^{120} 1000011 & \text{otherwise.} \end{cases}$

(n = 128)

OMAC1: $L \cdot u$, $L \cdot u^2$

$$L \xrightarrow{\text{left shift}} L \cdot \mathbf{u} \xrightarrow{\text{left shift}} L \cdot \mathbf{u}^2$$

OMAC2:
$$L \cdot u$$
, $L \cdot u^{-1}$

Efficiency Comparison

Name	K len.	#K sche.	#E invo.	#E pre.
XCBC	k+2n	1	$\lceil M /n \rceil$	0
TMAC	k+n	1	$\lceil M /n\rceil$	0
XCBC+kst	k	2	$\lceil M /n\rceil$	3 or 4
TMAC+kst	k	2	$\lceil M /n\rceil$	2 or 3
OMAC	k	1	$\lceil M /n \rceil$	1

 $kst \cdots key$ separation technique

We proposed OMAC and proved its security.

Optimal key length **without** security loss

Questions?

Tetsu Iwata

iwata@cis.ibaraki.ac.jp

Kaoru Kurosawa

kurosawa@cis.ibaraki.ac.jp