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What is a MAC?

Alice wishes to send Bob a message in such a way

that Bob can be certain (with very high probability)

that Alice was the true originator of the message.

⇓

MAC (Message Authentication Code)
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CBC MAC

Block cipher E : {0, 1}k × {0, 1}n → {0, 1}n
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Problems of CBC MAC

• does not allow messages of arbitrary bit length

(all messages must be a multiple of n bits)

• does not allow messages of varying lengths

(otherwise insecure)



Previous Works

• ANSI X9.19 (Optional Triple-DES)

• MacDES [Knudsen, Preneel]

• EMAC [Race Project]

(Analysis by [Petrank, Rackoff] and [Vaudenay])

• XCBC [Black, Rogaway]

• TMAC [Kurosawa, Iwata]



XCBC (Black and Rogaway, Crypto ’00)

Case |M | = mn (m ≥ 1)
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XCBC (Black and Rogaway, Crypto ’00)

Case |M | �= mn
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Advantages of XCBC

• Correctly handles messages of any bit length

• Correctly handles messages of varying lengths

Disadvantage of XCBC

• Three keys (k + 2n bits), K1, K2, K3.



TMAC (Kurosawa and Iwata, RSA ’03)

(K1, K2, K3) → (K1, K2 · u, K2)

Two keys (k + n bits), K1, K2.

Still not optimal



Our Proposal: OMAC-family

� �
One key (k bits) K

� �

(with small cost and without security loss)



OMAC-family

• a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n,

(AES, Camellia, TDES, . . . )

• an n-bit constant Cst, (arbitrarily)

• a hash function H : {0, 1}n × X → {0, 1}n,

• two distinct constants Cst1, Cst2 ∈ X .



Conditions on H, Cst1 and Cst2

• ∀y, #{L | HL(Cst1) = y} ≤ ε1 · 2n

• ∀y, #{L | HL(Cst2) = y} ≤ ε2 · 2n

• ∀y, #{L | HL(Cst1) ⊕ HL(Cst2) = y} ≤ ε3 · 2n

• ∀y, #{L | HL(Cst1) ⊕ L = y} ≤ ε4 · 2n

• ∀y, #{L | HL(Cst2) ⊕ L = y} ≤ ε5 · 2n

• ∀y, #{L | HL(Cst1)⊕HL(Cst2)⊕L = y} ≤ ε6·2n



OMAC-family: Set-up
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OMAC-family

Case |M | = mn (m ≥ 1)

M [1]

�

E�K
�

�
�

�
�

�
�

�

M [2]

��
�

E�K
�

�
�

�
�

�
�

�

M [3]

��
�

E�K
�

T

� HL(Cst1)

L = EK(Cst)



OMAC-family

Case |M | �= mn
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Security of OMAC-family
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• A forges if T ′ = OMAC-familyK(M ′), M ′ �= Mi
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Theorem

Suppose that E is a random permutation P . Let

A be an adversary which asks at most q queries, and

each query is at most nm bits (m ≤ 2n/4). Then

Advmac
OMAC-familyP

(A) ≤ q2

2
·
(

7m2 + 2

2n
+ 3m2ε

)
+

1

2n

where ε = max{ε1, . . . , ε6}.



Theorem (Cont.)

• If εi ≈ 2−n, then OMAC-family is secure up to the

birthday paradox limit.

• When E is a real block cipher (AES, Camellia,

TDES), Advprp
E (B) is added to the above bound.



Block Cipher Security (PRP)
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Examples of H, Cst1 and Cst2

Two Specifications: OMAC1, OMAC2

OMAC = OMAC1 and OMAC2



Proposed Specification: OMAC1

• Cst = 0n,

• HL(x) = L · x (“·” over GF(2n))

• Cst1 = u,

• Cst2 = u2.

⇓
ε1 = · · · = ε6 = 2−n



Proposed Specification: OMAC1

Case |M | = mn (m ≥ 1)
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Proposed Specification: OMAC1

Case |M | �= mn
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L · u and L · u2

L · u =




L << 1 if L127 = 0,

(L << 1) ⊕ 012010000111 otherwise.

(n = 128)

L ·u2 = (L ·u) ·u can be easily obtained from L ·u.



Proposed Specification: OMAC2

• Cst = 0n,

• HL(x) = L · x (“·” over GF(2n))

• Cst1 = u,
same as OMAC1

• Cst2 = u−1.

⇓
ε1 = · · · = ε6 = 2−n



Proposed Specification: OMAC2

Case |M | = mn (m ≥ 1)
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Proposed Specification: OMAC2

Case |M | �= mn
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L · u−1

L · u−1 =




L >> 1 if L0 = 0,

(L >> 1) ⊕ 101201000011 otherwise.

(n = 128)



OMAC1: L · u, L · u2

L
left shift−−−−→ L · u left shift−−−−→ L · u2

OMAC2: L · u, L · u−1

L

left shift−−−−→ L · u
right shift−−−−−→ L · u−1



Efficiency Comparison

Name K len. #K sche. #E invo. #E pre.

XCBC k + 2n 1 �|M |/n 0

TMAC k + n 1 �|M |/n 0

XCBC+kst k 2 �|M |/n 3 or 4

TMAC+kst k 2 �|M |/n 2 or 3

OMAC k 1 �|M |/n 1

kst· · · key separation technique



Conclusion

We proposed OMAC and proved its security.

� �
Optimal key length without security loss
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Questions?

Tetsu Iwata

iwata@cis.ibaraki.ac.jp

Kaoru Kurosawa

kurosawa@cis.ibaraki.ac.jp


