

#### Improved Parameter Estimates for Correlation and Capacity Deviates in Linear Cryptanalysis

Céline Blondeau and Kaisa Nyberg

Aalto University School of Science kaisa.nyberg@aalto.fi

FSE 2017 TOKYO March 8, 2017

Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



#### Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



# **Data Complexity in Linear Cryptanalysis**

Known Plaintext (KP) or Distinct Known Plaintext (DKP) data Linear cryptanalysis

data complexity upperbounded based on expected absolute value of linear correlation (or bias), or when squared, *expected linear potential* ELP

#### Multiple/Multidimensional linear cryptanalysis

 data complexity upperbounded based on expected capacity (sum of the ELP of linear approximations)



## Variance of Correlation and Capacity

Correlation of a linear approximation varies with key

[BN 2016] Model of classical case with single dominant trail [this paper] Model of the case with several strong trails Application to SIMON

Capacity of multiple/multidimensional varies with key Problem: Obtain accurate variance estimate [BN 2016] First estimate based on [Huang et al. 2015] [this paper] Improved variance estimates [Vejre 2016] Multivariate cryptanalysis: without independence assumptions on linear approximations



Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



### **Observed Correlation**

- D sample set of size N
- K encryption key
- *k*<sub>r</sub> recoverable part of the key
- $\kappa$  last round key candidate
- $G_{\kappa}^{-1}$  decryption with  $\kappa$

#### Observed correlation $\hat{c}(D, K, k_r, \kappa) = \frac{2}{N} \#\{(x, y') \in D \mid u \cdot x + v \cdot G_{\kappa}^{-1}(y') = 0\} - 1$

Parameters of observed correlation  $\begin{aligned} & \text{Exp}_{D}\hat{c}(D, K, k_{r}, \kappa) = c(K, k_{r}, \kappa) \\ & \text{Var}_{D}\hat{c}(D, K, k_{r}, \kappa) = \frac{B}{N} \\ & B = \begin{cases} 1, & \text{for KP (binomial distribution),} \\ \frac{2^{n} - N}{2^{n} - 1}, & \text{for DKP (hypergeometric distribution).} \\ & \text{It remains to determine parameters of } c(K, k_{r}, \kappa) \end{aligned}$ 



## Parameters of $c(K, k_r, \kappa)$

We expect different behaviour for  $\kappa = k'_r$  (cipher) and  $\kappa \neq k'_r$  (random).

#### Random

 $c(K, k_r, \kappa)$  is a correlation of a random linear approximation [Daemen-Rijmen 2006]  $c(K, k_r, \kappa)$  is a normal deviate with

$$\begin{aligned} & \mathsf{Exp}_{K,k_r,\kappa} c(K,k_r,\kappa) &= 0 \\ & \mathsf{Var}_{K,k_r,\kappa} c(K,k_r,\kappa) &= 2^{-n} \end{aligned}$$

#### Cipher

denote  $c(K) = c(K, k_r, \kappa)$ 

$$Exp_{K}c(K) = c$$
  

$$Exp_{K}c(K)^{2} = ELP$$
  

$$Var_{K}c(K) = ELP - c^{2}$$



## **Case: Several Dominant Trails**

Normal distribution, c = 0



Given advantage a and sample size N, then

$$P_{\mathcal{S}} = 2 - 2\Phi\left(\sqrt{\frac{B + N2^{-n}}{B + N \cdot ELP}} \cdot \Phi^{-1}(1 - 2^{-a-1})\right)$$

where  $\Phi$  is CDF of standard normal distribution



Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



## **Experiments on SIMON**

[Chen-Wang 2016] Attack on 20 rounds of SIMON32/64 using a 13-round linear approximation with  $c \approx 0$  and experimentally determined  $ELP = 2^{-18.19}$ 

| Data | N                 | а | $P_S^{(exp)}$ | P <sub>S</sub> <sup>(our)</sup> | $P_S^{(bt)}$ | $P_S^{(selcuk)}$ | $P_S^{(min)}$ | $P_S^{(max)}$ |
|------|-------------------|---|---------------|---------------------------------|--------------|------------------|---------------|---------------|
| DKP  | 2 <sup>31.5</sup> | 8 | 32.2%         | 36.6%                           | (26.7%)      | (60.4%)          | (23.5%)       | (35.6%)       |
| DKP  | 2 <sup>32</sup>   | 8 | 38.4%         | 44.1%                           | (36.8%)      | (80.5%)          | (24.9%)       | (38.9%)       |
| KP   | 2 <sup>33</sup>   | 8 | 30.6%         | 35.3%                           | 61.7%        | 99.2%            | 26.1%         | 42.7%         |
| KP   | 2 <sup>35</sup>   | 8 | 35.5%         | 41.4%                           | 97.3%        | 100%             | 26.4%         | 43.7%         |
| DKP  | 2 <sup>31.5</sup> | 3 | 58.4%         | 63%                             | (87.4%)      | (94.7%)          | (25.9%)       | (42.0%)       |
| DKP  | 2 <sup>32</sup>   | 3 | 64.1%         | 68.1%                           | (94.2%)      | (98.6%)          | (26.2%)       | (42.9%)       |
| KP   | 2 <sup>33</sup>   | 3 | 60.5%         | <b>62</b> .2%                   | 99.5%        | 100%             | 26.4%         | 43.7%         |
| KP   | 2 <sup>35</sup>   | 3 | 59.6%         | 66.3%                           | 100%         | 100%             | 26.4%         | 43.7%         |



# **Summary of Linear Attack**

Variance of correlation  $Var_{\kappa}c(\kappa) = ELP - (Exp_{\kappa}c(\kappa))^{2}$ 

[Selçuk 2008] & [Bogdanov-Tischhauser 2013]  $ELP = (Exp_K c(K))^2 \Rightarrow Var_K c(K) = 0$ that is, all keys behave as average.

[BN 2016] Var<sub>K</sub>c(K) > 0 and Exp<sub>K</sub> $c(K) = \pm c$  where  $c \neq 0$  (one dominant trail)

[this paper] Var<sub>K</sub>c(K) > 0 and Exp<sub>K</sub> $c(K) \approx 0 \Rightarrow Var_K c(K) \approx ELP$ 

Strong trails always count



## **Estimating** *ELP*

$$\boldsymbol{c}(\boldsymbol{K}) = \sum_{\tau} (-1)^{\tau \cdot \boldsymbol{K}} \boldsymbol{c}(\boldsymbol{u}, \tau, \boldsymbol{v})$$

where  $c(u, \tau, v)$  is *trail correlation* of trail  $\tau$ 

[Bogdanov-Tischhauser 2013] Set  $\mathcal{S}$  of identified trails. Write

$$c(K) = \sum_{\tau \in S} (-1)^{\tau \cdot K} c(u, \tau, v) + R(K)$$

where R(K) is assumed to behave like random.

$$ELP \approx \sum_{\tau \in S} c(u, \tau, v)^2 + 2^{-n}.$$

Accuracy depends on the choice of  $\ensuremath{\mathcal{S}}$ 



Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



#### **Attack Statistic**

Given  $\ell$  linear approximations, the attack statistic is computed as

$$T(D, K, k_r, \kappa) = N \sum_{j=1}^{\ell} \hat{c}_j(D, K, k_r, \kappa)^2.$$

In multidimensional attack the linear approximations form a linear subspace and the attack statistic can also be computed as

$$T(D, K, k_r, \kappa) = \sum_{\eta=0}^{\ell} \frac{(V[\eta] - N2^{-s})^2}{N2^{-s}},$$

where  $V[\eta]$  corresponds to the number of occurrences of the value  $\eta$  of the observed data distribution of dimension *s* where  $2^s = \ell + 1$ .



## Parameters of $T(D, K, k_r, \kappa)$

Given in terms of capacity C(K) (= sum of squared correlations):

#### Cipher

#### [BN2016]

 $\begin{aligned} & \operatorname{Exp}_{D,K} T(D, K, k_r, \kappa) = B\ell + N \cdot \operatorname{Exp}_K C(K) \\ & \operatorname{Var}_{D,K} T(D, K, k_r, \kappa) = 2B^2\ell + 4BN \cdot \operatorname{Exp}_K C(K) + N^2 \cdot \operatorname{Var}_K C(K) \end{aligned}$ 

Multiple LC: assumption about independence of correlations  $\hat{c}_i(D, K, k_r)$  for each fixed  $K, k_r$ 

Multidimensional LC: No assumption

#### Random $Exp_{D,K}(T(D, K, k_r, \kappa)) = B\ell + N2^{-n}\ell$ $Var_{D,K}(T(D, K, k_r, \kappa)) = \frac{2}{\ell}(B\ell + N2^{-n}\ell)^2$ non-central $\chi^2$ distribution



## **Multidimensional Trail for SPN Cipher**

After encryption/decryption with key candidate, data pairs in  $U \times V$ 



bijective S-boxes  $\Rightarrow$ 

capacity on  $U \times V$  is equal to capacity on  $S_1(U) \times (S_2 || S_3)^{-1}(V) \Rightarrow$ 

two nonlinear rounds for free



## **Capacity of Multidimensional Approximation**

 $S_1(U) \times (S_2 || S_3)^{-1}(V)$  has a certain capacity C(K).

In practice, it can be estimated by considering a subset of M strong linear approximations

$$(u_j, v_j) \in S_1(U) \times (S_2 || S_3)^{-1}(V)$$

and assume all other linear approximations are random

In general, write

$$C(K) = \sum_{j=1}^{M} c(u_j, v_j)(K)^2 + \sum_{j=M+1}^{\ell} \rho_j^2$$

where  $\rho_i$  are correlations of random linear approximations.



#### **Estimating Expected Capacity** Denote $ELP_i = Exp(c(u_i, k_i)^2)$ . Then

$$\operatorname{Exp}_{K}C(K) = \sum_{j=1}^{\ell} ELP_{j}.$$

Subset of linear approximations, numbered as j = 1, ..., M, with identified sets  $S_j$  of strong linear trails, and the remaining are assumed to be random:

$$\operatorname{Exp}_{K}C(K) \approx \sum_{j=1}^{M} ELP_{j} + (\ell - M)2^{-n}.$$

By  $ELP_j \approx \sum_{\tau \in S_j} c(u_j, \tau, v_j)^2 + 2^{-n}$ , we obtain

$$C = \operatorname{Exp}_{K} C(K) \approx \sum_{j=1}^{M} \sum_{\tau \in S_{j}} c(u_{j}, \tau, v_{j})^{2} + \ell 2^{-n}.$$



## **Estimating Variance of Capacity**

Starting from

$$C(\mathcal{K}) = \sum_{j=1}^{M} c(u_j, v_j)(\mathcal{K})^2 + \sum_{j=M+1}^{\ell} c(u_j, v_j)(\mathcal{K})^2,$$

where the linear approximations  $(u_j, v_j)$ ,  $j = M + 1, ..., \ell$ , are random, we further assume:

Assumption: Correlations  $c(u_j, v_j)(K)$ , j = 1, ..., M, are independent and have expected value equal to zero.

Then

$$\operatorname{Var}_{K} C(K) = \sum_{j=1}^{M} 2ELP_{j}^{2} + (\ell - M)2^{1-2n}$$



Introduction

Key-Recovery Attack: One Linear Approximation

Application to SIMON 32/64

Multidimensional/Multiple Linear Cryptanalysis



# Five Round SMALLPRESENT-[4]



Figure : Comparison between the experimental distribution of  $T(D, K, k_r, \kappa)$  and normal distributions with mean  $\ell + NC$  and different variances. Left with  $N = 2^{14}$ . Right with  $N = 2^{15}$ .



## **Multidimensional Linear Attack on PRESENT**

| attacked | $\sum_{k=1}^{M} \sum_{i=1}^{N} c(\mu - \mu)^2$         |                     |                   | Success probability |            |
|----------|--------------------------------------------------------|---------------------|-------------------|---------------------|------------|
| rounds   | $\sum_{j=1}^{j} \sum_{\tau \in S_j} c(u_j, \tau, v_j)$ | С                   | N                 | Cho                 | This paper |
| r        | (over <i>r</i> – 2 rounds)                             |                     |                   | 2010                | KP         |
| 24       | 2 <sup>-50.16</sup>                                    | 2 <sup>-49.95</sup> | 2 <sup>58.5</sup> | 97%                 | 86%        |
| 25       | 2 <sup>-52.77</sup>                                    | $2^{-51.80}$        | 2 <sup>61</sup>   | 94%                 | 74%        |
| 26       | 2 <sup>-55.38</sup>                                    | $2^{-52.60}$        | 2 <sup>63.8</sup> | 98%                 | 51%        |

Table : Multidimensional linear attacks on PRESENT. Success probability for advantage *a* of 8 bits.

Remark. Using DKP, the success probability is higher, e.g., for 26 round attack we get  $P_S = 90\%$ .



### Conclusions

- Focus on linear approximations with several strong trails
- Improved formula of P<sub>S</sub> of linear key recovery attack
- New better and simpler model of the attack on SIMON
- Parameters of test statistic in multiple/multidimensional cryptanalysis
- Improved estimates of expected value and variance of capacity

Thank you for your attention!

