Stronger Security Variants of GCM-SIV

Tetsu Iwata^{*1} Kazuhiko Minematsu²

FSE 2017 Tokyo, Japan March 8 2017

Nagoya University, Japan

NEC Corporation, Japan

^{*} Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045.

Introduction

Nonce-Based AE and Its Limitation

- Nonce-based authenticated encryption : GCM [MV04], CCM [WHF02], OCB [RBBK01], EAX [BRW04], etc.
- They use a nonce for security: repeating the nonce has critical impact on security
 - Counter-then-MAC (incl. GCM): leaks plaintext difference
 - For GCM, even authentication key is leaked, allows universal forgery

[[]MV04] D.McGrew and J.Viega: The Security and Performance of the Galois/Counter Mode of Operation, Indocrypt 2004.

[[]WHF02] D.Whiting, R.Housley, and N.Ferguson: AES Encryption and Authentication Using CTR Mode and CBC-MAC. 2002.

[[]RBBK01] P.Rogaway, M.Bellare, J.Black, and T.Krovetz: OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM CCS 2001.

[[]BRW04] M.Bellare, P.Rogaway, and D.Wagner: The EAX Mode of Operation. FSE 2004:

Deterministic AE (DAE), a.k.a Misuse-resistant Nonce-based AE (MRAE) [RS06]

- Provides best-possible security if nonce is missing or exists but can be repeated by mistake
- Many concrete proposals including several CAESAR submissions
- SIV, Synthetic IV [RS06]
 - A general approach to construct MRAE
 - use a PRF to generate IV (also used as a tag), use IV in IV-based encryption

[[]RS06] P.Rogaway and T.Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. Eurocrypt 2006.

Components:

- $\bullet \ \mathsf{F}: \mathcal{K} \times \mathcal{A} \times \mathcal{M} \to \mathcal{T}$
- Enc $: \mathcal{K}' \times \mathcal{T} \times \mathcal{M} \to \mathcal{M},$ and the inverse, Dec

- Typically a keystream generator

For encryption of plaintext M with associated data A:

- 1. $T \leftarrow \mathsf{F}_K(A, M)$
- 2. $C \leftarrow \mathsf{Enc}_{K'}(T, M)$
- 3. Return tag T and ciphertext C

Decryption: receives (A, T, C), computes $M \leftarrow \mathsf{Dec}_{K'}(T, C)$ and checks if $\mathsf{F}_K(A, M)$ matches with T

Provable security of SIV

We need PRF security of F and IV-based encryption security of Enc

GCM-SIV

GCM-SIV

- Proposed by Gueron and Lindell [GL15]
- Instantation of SIV using GCM components, GHASH and GCTR

- Very fast AESNI implementations [GL15]

- Provable security $O(2^{(n-k)/2})$
 - Typically n = 128, k = 32. Thus about 48-bit security

Concrete Bound

For three-key version, with q encryption and q' decryption queries:

$$\mathbf{Adv}_{\mathrm{GCM-SIV}}^{\mathrm{mrae}}(\mathcal{A}) \leq 2\mathbf{Adv}_{E}^{\mathrm{prf}}(\mathcal{A}') + \frac{q^{2}}{2^{95}} + \frac{q^{2} + q'}{2^{128}}$$

[[]GL15] S.Gueron and Y.Lindell : GCM-SIV: Full Nonce Misuse-Resistant Authenticated Encryption at Under One Cycle per Byte. ACM CCS 2015

GCM-SIV

Specification:

Algorithm	Algorithm
$\operatorname{GCM-SIV-}\mathcal{E}_{\boldsymbol{K}}(N,A,M)$	$\operatorname{GCM-SIV-}\mathcal{D}_{\boldsymbol{K}}(N,A,C,T)$
1. $V \leftarrow H_L(N, A, M)$	1. $IV \leftarrow msb_{n-k}(T) \parallel 0^k$
2. $T \leftarrow E_{K'}(V)$	2. $m \leftarrow C _n$
3. $IV \leftarrow msb_{n-k}(T) \parallel 0^k$	3. $\mathbf{S} \leftarrow CTR_K(IV, m)$
4. $m \leftarrow M _n$	4. $M \leftarrow C \oplus msb_{ C }(\mathbf{S})$
5. $\mathbf{S} \leftarrow CTR_K(IV, m)$	5. $V \leftarrow H_L(N, A, M)$
6. $C \leftarrow M \oplus msb_{ M }(\mathbf{S})$	6. $T^* \leftarrow E_{K'}(V)$
7. return (C,T)	7. if $T \neq T^*$ then return \perp
	8. return M

• H_L is GHASH (with final xor of *n*-bit *N*)

- $H_L(N, A, M) = \mathsf{GHASH}_L(A, M) \oplus N$

• CTR_K employs incrementation in the last k bits (as GCM)

- Initial counter value is $msb_{n-k}(T)$

Security Bound is Tight

- Attack by counter collision search
- Fix A and M and make $2^{(n-k)/2}$ enc-queries (N_i, A, M) w/ distinct N_i s
- For i and j w/ msb_{n-k}(T_i) = msb_{n-k}(T_j), the adversary gets the same ciphertext

Considerations on Security

- Nonce-misuse-resistance : obivious quantitative gain in security from GCM
- While quantitatively the security can be degraded from GCM
 - distinguishing attack with $q = O(2^{(n-k)/2})$ queries
 - For GCM, there is no attack of the same complexity
 - * if |N| = 96, IV is N itself no counter collision
 - * Even if $|N| \neq 96$ GCM bound is still good [NMI15]

[[]NMI15] : Y.Niwa, K.M., T.Iwata. GCM Security Bounds Reconsidered. FSE 2015.

Our Contributions

- The design strategy of reusing GCM components to build MRAE is practically valuable
- While the security offered by GCM-SIV may not be satisfactory in practice
- It seems some unexplored design space for stronger security
 - Up to the birthday bound (n/2-bit security)?
 - Beyond the birthday bound?

Our contributions

- GCM-SIV1: a minor variant of GCM-SIV achieving birthday bound security
- GCM-SIVr (for r ≥ 2): by reusing r GCM-SIV1 instances to achieve rn/(r + 1)-bit security

The changes are so simple:

- use the whole T as IV
- use full *n*-bit counter incrementation instead of *k*-bit incrementation

Concrete Bound

If H_L is ϵ -almost universal (ϵ -AU),

$$\mathbf{Adv}_{\mathrm{GCM-SIV1}}^{\mathrm{mrae}}(\mathcal{A}) \le 0.5q^2\epsilon + \frac{0.5q^2}{2^n} + \frac{\sigma^2}{2^n} + \frac{q}{2^n}$$

for q total (enc and dec) queries, each query is of length at most $n\ell$ bits, and σ queried blocks If H_L is GHASH, $\epsilon = \ell/2^n$ thus $\ell q^2/2^n + \sigma^2/2^n + q/2^n$

Thus GCM-SIV1 is secure up to the standard birthday bound w.r.t. σ

Comprison of security bounds for GCM-SIV and GCM-SIV1

- Minimum attack complexity is increased ((n-k)/2 to n/2 bits)
- Still, depending on the average query length (σ/q), we can decribe two possible parameter settings where GCM-SIV1 beats GCM-SIV and vice versa

- GCM-SIV1 is very close to GCM-SIV, but
 - it needs full *n*-bit arithmetic addition
 - slightly degraded performance from GCM-SIV using GCTR

Beyond the Birthday Bound (BBB)

Beyond $O(\sigma^2/2^n)$ bound – how ?

- Generic approach: use 2*n*-bit blockcipher in SIV of 2*n*-bit data path
- Effective instantiation not easy:
 - Widely-used 256-bit blockcipher?
 - Known constructions for 2n-bit blockcipher from n-bit one (say, many-round Luby-Rackoff)
 - * not fully efficient
 - not reusing GCM components (deviation from our strategy)

Our approach : GCM-SIVr

Compose r GCM-SIV1 instances in a manner close to black-box

GCM-SIV2

- 1. Take two independently-keyed H_L s to get 2n-bit hash value (V[1], V[2])
- 2. Encrypt hash value with four blockcipher calls to get 2n-bit tag (T[1],T[2])
- 3. Plaintext is encrypted by a sum of two CTR modes taking two IVs, T[1] and T[2]

Proving Security of GCM-SIV2

- First game : Distinguish MAC function F2, which takes $(N, A, M) \rightarrow T$, from random function
 - Assuming blockciphers are random permutations

- SUM-ECBC by Yasuda [Y10] for BBB-secure PRF
- It is a sum of two Encrypted CBC-MACs (EMACs)

 $- T = E_{K_2}(\mathsf{CBC}\mathsf{-MAC}[E_{K_1}](M)) \oplus E_{K_4}(\mathsf{CBC}\mathsf{-MAC}[E_{K_3}](M))$

• [Y10] proved PRF bound $12\ell^4q^3/2^{2n}$ for SUM-ECBC, thus 2n/3-bit security (ignoring ℓ)

[[]Y10] K.Yasuda. The Sum of CBC MACs Is a Secure PRF. CT-RSA 2010

Analysis of F2

F2 is reduced to SUM-ECBC if

- output is chopped to n bits, either T[1] or T[2]
- H_L is CBC-MAC

– Osaki [O12] : CBC-MAC can be any ϵ -AU hash function

[[]O12] A.Osaki. A Study on Deterministic Symmetric Key Encryption and Authentication. Master's thesis, Nagoya University

Analysis of F2

Our task : extending [Y10][O12] so that F2 can handle 2n-bit output

- Game-playing technique [BR06]
- [Y10][O12] employed a game having four cases
 - depending on the existance of collision in V[i] for given input and for i=1,2
- We can employ a similar analysis as [Y10][O12] but need subcases to handle 2*n*-bit output

PRF bound

If
$$H_L$$
 is ϵ -AU, $\mathbf{Adv}_{\mathsf{F2}}^{\mathrm{prf}}(\mathcal{A}) \leq \frac{8q^3}{3 \cdot 2^{2n}} + 6\epsilon^2 q^3$
If H_L is GHASH, $\mathbf{Adv}_{\mathsf{F2}}^{\mathrm{prf}}(\mathcal{A}) \leq \frac{8.7\ell^2 q^3}{2^{2n}}$

[[]BR06] M. Bellare, P. Rogaway: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. EUROCRYPT 19 2006

Analysis of Encryption Part

Second game: F2 is replaced with a random function $\ensuremath{\mathit{R}}$

- Encryption takes 2n-bit random IV, (T[1], T[2])
- *i*-th counter block is (T[1] + i 1, T[2] + i 1)

Quite similar analysis as F2:

- $(N, A, M, i) \rightarrow (T[1] + i 1, T[2] + i 1)$ can be seen as a hashing process involving R and inc function
- Low collision probability for two distinct inputs, in fact $1/2^{2n}$

Concrete Bound of GCM-SIV2

For any (q, ℓ, σ) -adversary \mathcal{A} ,

$$\mathbf{Adv}_{\mathrm{GCM-SIV2}}^{\mathrm{mrae}}(\mathcal{A}) \leq \frac{7\sigma^3}{2^{2n}} + 6\epsilon^2 q^3 + \frac{q}{2^{2n}},$$

and if H_L is GHASH, the r.h.s. is bounded by

$$\frac{7\sigma^3}{2^{2n}} + \frac{6\ell^2 q^3}{2^{2n}} + \frac{q}{2^{2n}}$$

Generalization to any r

The tag is generated by $Fr : \mathcal{N} \times \mathcal{A} \times \mathcal{M} \rightarrow \{0, 1\}^{nr}$.

- Analysis of Fr : we introduce $X = (x_1, \dots, x_r) \in \{0, 1\}^r$, where $x_i = 1$ indicates a collision on H_{L_i} 's outputs
- Exploit the symmetric property : the analysis is only depending on the Hamming weight of *X*
 - not much technical difficulty but needs careful work

Security of GCM-SIVr

- Let $f_{\mathsf{bad}}(p)$ be the probability of bad event invoked with weight of X being $p \in \{0, \dots, r\}$
- Then $f_{\mathsf{bad}}(p)$ is bounded by $(2\epsilon)^r \cdot q^{r+1}$ for any $0 \le p \le r$

Concrete Bound of Fr

For any (q, ℓ, σ) -adversary \mathcal{A} ,

$$\mathbf{Adv}_{\mathsf{F}r}^{\mathrm{prf}}(\mathcal{A}) \le r \cdot 2^r \max_{p} \{f_{\mathsf{bad}}(p)\} \le r \cdot (4\epsilon)^r \cdot q^{r+1},$$

which is $r \cdot (4\ell)^r \cdot q^{r+1}/2^{nr}$ if H_L is GHASH

Note: a dedicated analysis for given r can improve the bound constant (which we employed for r = 2) Encryption security is similarly derived as Fr

Concrete Bound of GCM-SIVr

For any (q, ℓ, σ) -adversary \mathcal{A} , we have

$$\mathbf{Adv}_{\mathrm{GCM}\text{-}\mathrm{SIV}r}^{\mathrm{mrae}}(\mathcal{A}) \leq r \cdot (4\epsilon)^r \cdot q^{r+1} + \frac{4^r \cdot \sigma^{r+1}}{2^{nr}} + \frac{q}{2^{nr}},$$

and if GHASH is used for H_L ,

$$\mathbf{Adv}_{\mathrm{GCM-SIV}r}^{\mathrm{mrae}}(\mathcal{A}) \leq \frac{r \cdot (4\ell)^r \cdot q^{r+1}}{2^{nr}} + \frac{4^r \cdot \sigma^{r+1}}{2^{nr}} + \frac{q}{2^{nr}}$$

Summary

GCM-SIVr is secure up to about $2^{rn/(r+1)}$ query complexity, and hence it asymptotically achieves full n-bit security

Conclusions

- Variants of GCM-SIV to offer quantitatively stronger security
- GCM-SIV1 : Standard n/2-bit security by tiny change to the original
- GCM-SIVr for $r \ge 2$: Use r GCM-SIV1 instances to go beyond the birthday bound, rn/(r+1)-bit security
 - Close to the black-box composition, highly parallel
 - (To our knowledge) the first concrete MRAE scheme to achieve asymptotically optimal security based on classical blockcipher
 - Large *r* implies large computation and large bandwidth, thus impractical

Conclusions

- Variants of GCM-SIV to offer quantitatively stronger security
- GCM-SIV1 : Standard n/2-bit security by tiny change to the original
- GCM-SIVr for $r \ge 2$: Use r GCM-SIV1 instances to go beyond the birthday bound, rn/(r+1)-bit security
 - Close to the black-box composition, highly parallel
 - (To our knowledge) the first concrete MRAE scheme to achieve asymptotically optimal security based on classical blockcipher
 - Large *r* implies large computation and large bandwidth, thus impractical

Thank you!