New techniques for trail bounds and application to differential trails in Keccak

Silvia Mella1,2, Joan Daemen1,3, Gilles Van Assche1

1STMicroelectronics 2University of Milan 3Radboud University

Fast Software Encryption
March 5-8, 2017
Outline

1. Introduction
2. Generating trails
3. Scanning space of trails in Keccak-f
4. Experimental results
5. Conclusions
1. Introduction

2. Generating trails

3. Scanning space of trails in Keccak-f

4. Experimental results

5. Conclusions
Differential trails in iterated mappings

- **DP**(Q) \approx \(DP_{0,1} \times DP_{1,2} \times DP_{2,3} \times DP_{3,4} \times DP_{4,5} \times DP_{5,6} \)

- **Trail**: the sequence of differences after each round

- **DP**(Q): fraction of pairs that exhibit \(q_i \) differences
Differential trails and weight

\[w = -\log_2(DP) \]

\[w(Q) = w_{0,1} + w_{1,2} + w_{2,3} + w_{3,4} + w_{4,5} + w_{5,6} \]

- The weight is the number of binary conditions that a pair must satisfy to exhibit \(q_i \) differences.
- If independent conditions and \(w(Q) < b \): \(\#\text{pairs}(Q) \approx 2^{b-w(Q)} \)
Given a trail, we can extend it

- forward: iterate over all differences R-compatible with q_5
- backward: iterate over all differences R^{-1}-compatible with q_1

Extension can be done recursively
Given a trail, we can extend it

- forward: iterate over all differences \(R \)-compatible with \(q_5 \)
- backward: iterate over all differences \(R^{-1} \)-compatible with \(q_1 \)

Extension can be done recursively
Trail extension

Given a trail, we can extend it

- forward: iterate over all differences R-compatible with q_5
- backward: iterate over all differences R^{-1}-compatible with q_1

Extension can be done recursively
Trail extension

Given a trail, we can extend it

- forward: iterate over all differences R-compatible with q_5
- backward: iterate over all differences R^{-1}-compatible with q_1

Extension can be done recursively
Differential trails

Trail cores

- Minimum reverse weight:

\[w^\text{rev}(q_1) \triangleq \min_{q_0} w(q_0, q_1) \]

- Can be used to lower bound set of trails

- Trail core: set of trails with \(q_1, q_2, \ldots \) in common
Goals of this work

- Present general techniques to generate trails
- Improve bounds of differential trails in Keccak-
 - By extending the space of trails in Keccak-
 that can be scanned with given computation resources

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>this work</td>
<td>this work</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>this work</td>
<td>this work</td>
<td>this work</td>
</tr>
<tr>
<td>5</td>
<td>this work</td>
<td>this work</td>
<td>this work</td>
<td>this work</td>
</tr>
<tr>
<td>6</td>
<td>this work</td>
<td>this work</td>
<td>this work</td>
<td>this work</td>
</tr>
</tbody>
</table>
1 Introduction

2 Generating trails

3 Scanning space of trails in Keccak-f

4 Experimental results

5 Conclusions
Generation of n-round trails of weight $\leq T$

First-order approach

Starting from 1-round differentials with weight $\leq \left\lfloor \frac{T}{n} \right\rfloor$

Second-order approach

Starting from 2-round trails with weight $\leq \left\lfloor \frac{2T}{n} \right\rfloor$

Fact

The number of 2-round trails with weight $\leq 2L$ is much smaller than the number of 1-round differentials with weight $\leq L$.

Example: AES

AES has more than 10^{11} round differentials with weight ≤ 15, but no 2-round trail with weight ≤ 30
Generating 2-round trails as tree traversal

- 2-round trails are arranged in a tree
- Children are generated by adding groups of active bits without removing bits already added
- Pruning by lower bounding the weight of a node and its children
Outline

1 Introduction

2 Generating trails

3 Scanning space of trails in Keccak-f

4 Experimental results

5 Conclusions
Keccak-f

Operates on 3D state:

- (5 x 5)-bit slices
- 2^\ell-bit lanes
- parameter 0 ≤ \ell < 7

Round function with 5 steps:

- θ: mixing layer
- ρ: inter-slice bit transposition
- π: intra-slice bit transposition
- χ: non-linear layer
- ι: round constants

rounds: 12 + 2\ell for width b = 2^{\ell}25
- 12 rounds in Keccak-f[25]
- 24 rounds in Keccak-f[1600]
Keccak-f

Operates on 3D state:

- (5 x 5)-bit slices
- 2^l-bit lanes
- parameter 0 ≤ l < 7

Round function with 5 steps:

- \(\theta \): mixing layer
- \(\rho \): inter-slice bit transposition
- \(\pi \): intra-slice bit transposition
- \(\chi \): non-linear layer
- \(\iota \): round constants

rounds: 12 + 2l for width \(b = 2^l25 \)

- 12 rounds in Keccak-f[25]
- 24 rounds in Keccak-f[1600]
Keccak-f

Operates on 3D state:

- (5 × 5)-bit slices
- 2^\ell-bit lanes
- parameter 0 ≤ \ell < 7

Round function with 5 steps:

- \theta: mixing layer
- \rho: inter-slice bit transposition
- \pi: intra-slice bit transposition
- \chi: non-linear layer
- \iota: round constants

rounds: 12 + 2\ell for width b = 2^\ell 25
- 12 rounds in Keccak-f[25]
- 24 rounds in Keccak-f[1600]
Keccak-f

Operates on 3D state:

- (5 × 5)-bit slices
- 2$^\ell$-bit lanes
- parameter $0 \leq \ell < 7$

Round function with 5 steps:

- θ: mixing layer
- ρ: inter-slice bit transposition
- π: intra-slice bit transposition
- χ: non-linear layer
- ι: round constants

rounds: $12 + 2\ell$ for width $b = 2^\ell 25$

- 12 rounds in Keccak-f[25]
- 24 rounds in Keccak-f[1600]
Properties of θ

- The θ map adds a pattern, that depends on the parity, to the state.
- Affected columns are complemented.
- Unaffected columns are not changed.
The parity Kernel

- θ acts as the identity if parity is zero
- A state with parity zero is in the kernel (or in $|K|$)
- A state with parity non-zero is outside the kernel (or in $|N|$)
Differential trails in Keccak-f

\[w(Q) = w(b_0) + w(b_1) + w(b_2) + w(b_3) \]

Round: linear step \(\lambda = \pi \circ \rho \circ \theta \) and non-linear step \(\chi \)

- \(a_i \) fully determines \(b_i = \lambda(a_i) \)
- \(\chi \) has degree 2: \(w(b_{i-1}) \) independent of \(a_i \)
- Minimum reverse weight:

\[w^{\text{rev}}(a_1) \triangleq \min_{b_0} w(b_0) \]
Differential trails in \textbf{Keccak-f}

\[
w(Q) = w(b_0) + w(b_1) + w(b_2) + w(b_3)
\]

Round: linear step \(\lambda = \pi \circ \rho \circ \theta \) and non-linear step \(\chi \)

- \(a_i \) fully determines \(b_i = \lambda(a_i) \)
- \(\chi \) has degree 2: \(w(b_{i-1}) \) independent of \(a_i \)
- Minimum reverse weight:

\[
w^{\text{rev}}(a_1) \triangleq \min_{b_0} w(b_0)
\]
Differential trails in **Keccak-f**

\[
 w(Q) = w_{rev}(a_1) + w(b_1) + w(b_2) + w(b_3)
\]

Round: linear step \(\lambda = \pi \circ \rho \circ \theta \) and non-linear step \(\chi \)

- \(a_i \) fully determines \(b_i = \lambda(a_i) \)
- \(\chi \) has degree 2: \(w(b_{i-1}) \) independent of \(a_i \)
- Minimum reverse weight:

\[
 w_{rev}(a_1) \triangleq \min_{b_0} w(b_0)
\]
Covering the space of 3-round trail cores

\[w(Q) = w_{\text{rev}}(a_1) + w(b_1) + w(b_2) \]

- Space split based on parity of \(a_i \);
- Four classes: \(K|K \), \(K|N \), \(N|K \) and \(N|N \)
Covering the space of 3-round trail cores

\[w(Q) = w_{rev}(a_1) + w(b_1) \]

- Generating \((a_1, b_1)\)
- Extending forward by one round
Covering the space of 3-round trail cores

\[w(Q) = w_{\text{rev}}(a_1) + w(b_1) \]

- Generating \((a_1, b_1)\)
- Extending forward by one round
Covering the space of 3-round trail cores

$$\text{w}(Q) = \text{w}_{\text{rev}}(a_2) + \text{w}(b_2)$$

- Generating \((a_2, b_2)\)
- Extending backward by one round
Covering the space of 3-round trail cores

\[w(Q) = w_{rev}(a_2) + w(b_2) \]

- Generating \((a_2, b_2)\)
- Extending backward by one round
To stay in $|K|$ units are *orbitals* \equiv pairs of active bits in the same column

A state a is a set of orbitals $a = \{u_i\}_{i=1,...,n}$

In the tree: the children of a node a are $a \cup \{u_{n+1}\}$
Order relation over units

- A total order relation over units allows avoiding duplicates
- With a total order \prec over units, a state is an ordered list of units:
 \[
 a = (u_i)_{i=1,\ldots,n} \text{ s.t. } u_1 \prec u_2 \prec \cdots \prec u_n
 \]

- In the tree: the children of a node a are
 \[
 a \cup \{u_{n+1}\} \text{ s.t. } u_n \prec u_{n+1}
 \]

- For orbitals: the lexicographic order $[z, x, y_1, y_2]$
Pruning by lower bounding the weight

- The weight is monotonic in the addition of orbitals
- The weight of a lower bounds the weight of all descendants of a
- As soon as the search encounters a with weight above the limit, a and all its descendants can be safely pruned
Parity-bare states

Parity-bare state: a state with the minimum number of active bits before and after θ for a given parity

- 0 active bits in unaffected even columns
- 1 active bit in unaffected odd column
- 5 active bits in affected column either before or after θ
States in $|N|$:

Lemma

Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals.
Lemma

Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals
Orbital tree

- **Root**: a parity-bare state
- **Units**: orbitals in unaffected columns
- **Order**: the lexicographic order on \([z, x, y_1, y_2]\)
- **Bound**: weight of the trail itself
Run tree

- **Root:** the empty state
- **Units:** column assignments
- **Bound:** by estimating maximum weight lost due to addition of new column assignments
Trail extension

- forward: iterate \(a_4 \) over all differences \(\chi \)-compatible with \(b_3 \)
- backward: iterate \(b_{-1} \) over all differences \(\chi^{-1} \)-compatible with \(a_0 \)
- in the kernel: restrict to differences with parity zero
- outside the kernel: restrict to differences with parity non-zero
Forward extension

- Set of compatible states is an affine space $A(b_r) = e + V$
- Basis transformation: $V = V_K + V_N$
- Extension in $|K|$ by scanning $e_K + V_K$
 - possible $\iff e_K$ exists
- Extension in $|N|$ by scanning $e + V_K + V_N$
- Scanning as a tree traversal
 - root: is the offset
 - children: by incrementally adding basis vectors
 - bound: by estimating the maximum weight lost due to addition of basis vectors not already added
Outline

1 Introduction

2 Generating trails

3 Scanning space of trails in Keccak-f

4 Experimental results

5 Conclusions
Experimental results

- All 3-round trail cores with weight ≤ 45

- No 6-round trail with weight ≤ 91
Outline

1. Introduction
2. Generating trails
3. Scanning space of trails in Keccak-f
4. Experimental results
5. Conclusions
Conclusions

- General formalism to generate differential patterns as simple and efficient tree traversal
- New bounds for Keccak-f and new trails with the lowest known weight

<table>
<thead>
<tr>
<th>rounds</th>
<th>$b = 200$</th>
<th>$b = 400$</th>
<th>$b = 800$</th>
<th>$b = 1600$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>24</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>[48,63]</td>
<td>[48,104]</td>
<td>[48,134]</td>
</tr>
<tr>
<td>5</td>
<td>[50,89]</td>
<td>[50,147]</td>
<td>[50,247]</td>
<td>[50,372]</td>
</tr>
<tr>
<td>6</td>
<td>[92,142]</td>
<td>[92,278]</td>
<td>[92,556]</td>
<td>[92,1112]</td>
</tr>
</tbody>
</table>

Table: Current bounds for the minimum weight of differential trails
Thanks for your attention