
New Blockcipher Modes of Operation with

Beyond the Birthday Bound Security∗

Tetsu Iwata

May 20, 2006

Department of Computational Science and Engineering,
Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
iwata@cse.nagoya-u.ac.jp

http://www.nuee.nagoya-u.ac.jp/labs/tiwata/

Abstract

In this paper, we define and analyze a new blockcipher mode of operation for
encryption, CENC, which stands for Cipher-based ENCryption. CENC has the fol-
lowing advantages: (1) beyond the birthday bound security, (2) security proofs with
the standard PRP assumption, (3) highly efficient, (4) single blockcipher key, (5)
fully parallelizable, (6) allows precomputation of keystream, and (7) allows random
access. CENC is based on the new construction of “from PRPs to PRF conver-
sion,” which is of independent interest. Based on CENC and a universal hash-based
MAC (Wegman-Carter MAC), we also define a new authenticated-encryption with
associated-data scheme, CHM, which stands for CENC with Hash-based MAC. The
security of CHM is also beyond the birthday bound.

∗An extended abstract of this paper appears in Fast Software Encryption, FSE 2006 [11]. This is the
full version.

1

Contents

1 Introduction 3

2 Preliminaries 5

3 The Basic Tool: A New Pseudorandom Function F 6

4 A Relaxed Version F+ 8

5 CENC: Cipher-based ENCryption 9

6 Security of CENC 11

7 CHM: CENC with Hash-based MAC 13

8 Security of CHM 15

9 Security Proofs of CHM 17

10 Discussions 24

Acknowledgement 24

References 24

2

1 Introduction

A blockcipher mode of operation, or a mode for short, is an algorithm that provides
security goals, such as privacy and/or authenticity, based on blockciphers. The mode for
privacy is called an encryption mode.

Of many encryption modes, counter (CTR) mode has a number of desirable advan-
tages, and it works as follows. Let E be a blockcipher whose block length is n bits, and let
ctr be an n-bit counter. For a plaintext M = (M0, . . . ,Ml−1) broken into n-bit blocks,
let {

Ci ←Mi ⊕ Si, where Si ← EK(ctr + i) for 0 ≤ i ≤ l − 1,
ctr← ctr+ l.

The ciphertext is C = (C0, . . . , Cl−1), and S = (S0, . . . , Sl−1) is the keystream.
Starting from [3], provable security (or reduction-based security) is the standard se-

curity goal for modes. For encryption modes, we consider the strong security notion of
privacy called “indistinguishability from random strings” from [23], which provably im-
plies the more standard notions given in [1]. In this strong notion, the adversary is in
the adaptive chosen plaintext attack scenario, and the goal is to distinguish the cipher-
text from the random string of the same length (where ctr is not considered part of the
ciphertext).

For CTR mode, Bellare, Desai, Jokipii and Rogaway were the first who presented
the proof of security [1]. The nonce-based treatment of CTR mode was presented by
Rogaway [21]. It was proved that, for any adversary against CTR mode, the success
probability is at most 0.5σ(σ − 1)/2n under the assumption that the blockcipher is a
secure pseudorandom permutation (PRP), where σ denotes the total ciphertext length in
blocks that the adversary obtains. This is the well-known birthday bound.

The above analysis is tight. There is an adversary that meets the security bound
within a constant factor. The adversary simply searches for a collision in the keystream
of σ blocks, and guesses the data is the true ciphertext iff there is no collision. It is easy
to show that the success probability is at least 0.3σ(σ − 1)/2n. This implies that, as long
as EK(·) is a permutation, there is no hope that CTR mode achieves beyond the birthday
bound security.

In this paper, we design a new blockcipher mode of operation for encryption. The
goals are: (1) beyond the birthday bound security, (2) security proofs with the standard
PRP assumption, (3) highly efficient, (4) single blockcipher key, (5) fully parallelizable,
(6) allows precomputation of keystream, and (7) allows random access. The original CTR
mode achieves all the above goals except for the first one, while we improve the security of
CTR mode without breaking its important advantages. As for the security assumption,
we do not use the ideal blockcipher model. For efficiency, the number of blockcipher calls
is close to CTR mode, and we avoid using any heavy operations, e.g., re-keying.

Now in CTR mode, it is known that if EK(·) is a secure pseudorandom function
(PRF), then for any adversary the success probability 0, well beyond the birthday bound.
Thus the natural approach to achieve beyond the birthday bound security is to construct
a secure PRF from PRPs and use the PRF in CTR mode, where the security of PRF
must be beyond the birthday bound. There are several such constructions [4, 10, 16, 2].
The first construction, due to Bellare, Krovetz, and Rogaway is called data-dependent
re-keying [4]. It was proved that the construction achieves beyond the birthday bound
security in the ideal blockcipher model. The truncation construction was analyzed by Hall

3

et. al., and they also considered the order construction [10]. Lucks [16] and Bellare and
Impagriazzo [2] independently analyzed the construction GK(x) = EK(x‖0) ⊕ EK(x‖1),
where x ∈ {0, 1}n−1. Lucks also considered a more generalized construction where d
blockciphers are xor’ed to output an n-bit block, and a multiple key version, GK1,K2(x) =
EK1(x)⊕EK2(x), where x ∈ {0, 1}n [16].

By using these constructions in CTR mode, it is possible to construct encryption
modes with beyond the birthday bound. However, there is a significant restriction in
efficiency, and/or it breaks several important advantages of the original CTR mode. For
example, if the construction from [4] is used, we need the ideal blockcipher model for
security proofs and have the efficiency problem for re-keying. The constructions from [10]
are not very efficient and the truncation construction has relatively small security im-
provement. If GK(x) = EK(x‖0) ⊕ EK(x‖1) is used, 2l blockcipher calls are needed to
encrypt l plaintext blocks. We see that the main reason for inefficiency is that the output
size of these PRFs is one block (or less).

To achieve beyond the birthday bound security, we first show a new “from PRPs to
PRF conversion,” where the output size of the new PRF is larger than the block size.
In particular, our PRF outputs w blocks at a time by using w + 1 blockcipher calls.
The parameter, w, is called a frame width, and one frame is equivalent to nw bits. The
frame width, w, can be any fixed positive integer. We prove that the adversary’s success
probability is at most wσ3/22n−3 +wσ/2n, where σ is the total number of blocks that the
adversary obtains.

Based on the PRF, we show a new encryption mode with beyond the birthday bound
security. The new mode is called CENC, which stands for Cipher-based ENCryption.
CENC calls l + �l/w� blockciphers to encrypt l plaintext blocks, and the default value is
w = 28, i.e., we need l+�l/256� blockcipher calls to encrypt l plaintext blocks. Notice that,
with the AES (n = 128), one frame corresponds to nw bits, which is 128×256 = 4KBytes,
and almost all the traffic on the Internet fits in one frame [8]. This implies we need
l + 1 blockcipher calls for these short data, i.e., the cost is one blockcipher call per data
compared to CTR mode. As for the security, with w = 28 and the AES, the security
bound of CENC is σ̂3/2248 + σ̂/2121, where σ̂ is (roughly) the total number of blocks that
the adversary obtains. The security of CENC is beyond the birthday bound with the
standard PRP assumption. Besides, CENC has desirable advantages of CTR mode. It
uses single blockcipher key, it is fully parallelizable, allows precomputation of keystream,
and random access is possible.

An authenticated-encryption with associated-data scheme, or AEAD scheme, is a
scheme for both privacy and authenticity. It takes a plaintext M and a header H, and
provides privacy for M and authenticity for both M and H. There are a number of
proposals: we have IAPM [13], OCB mode [23], CCM mode [25, 12], EAX mode [7],
CWC mode [15], GCM mode [19, 20], and CCFB mode [17]. Based on CENC and a
universal hash-based MAC (Wegman-Carter MAC), we propose a new AEAD scheme
called CHM, which stands for CENC with Hash-based MAC. We show that the security
of CHM is beyond the birthday bound, which is the first example in literature. The
scheme is similar to GCM, achieves higher security with small efficiency loss. It also fixes
several undesirable properties of GCM (for example, GCM is not online in the sense that
headers must be MACed before starting MAC the ciphertext, and the plaintext length is
limited to 64GBytes when used with the AES).

4

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. If x and y are two equal-
length strings, then x ⊕ y denotes the xor of x and y. If x and y are strings, then x‖y
denotes their concatenation. Let x ← y denote the assignment of y to x. If X is a set,
let x

R← X denote the process of uniformly selecting at random an element from X and
assigning it to x. For a positive integer n, {0, 1}n is the set of all strings of n bits. For
positive integers n and w, ({0, 1}n)w is the set of all strings of nw bits, and {0, 1}∗ is
the set of all strings (including the empty string). For positive integers n and m such
that n ≤ 2m − 1, [n]m is the m-bit binary representation of n. For a bit string x and
a positive integer n such that |x| ≥ n, first(n, x) and last(n, x) denote the first n bits of
x and the last n bits of x, respectively. For a positive integer n, 0n and 1n denote the
n-times repetition of 0 and 1, respectively.

Blockciphers and function families. The blockcipher (permutation family) is a func-
tion E : K × {0, 1}n → {0, 1}n, where, for any K ∈ K, E(K, ·) = EK(·) is a permutation
on {0, 1}n. The positive integer n is the block length and an n-bit string is called a block.
If K = {0, 1}k , then k is the key length.

The PRP notion for blockciphers was introduced in [18] and later made concrete in
[3]. Let Perm(n) denote the set of all permutations on {0, 1}n. This set can be regarded
as a blockcipher by considering that each permutation is specified by a unique string.
P is a random permutation if P

R← Perm(n). An adversary is a probabilistic algorithm
(a program) with access to one or more oracles. Let A be an adversary with access to
an oracle, either the encryption oracle EK(·) or a random permutation oracle P (·), and
returns a bit. We say A is a PRP-adversary for E, and we define

Advprp
E (A) def=

∣∣∣Pr(K R← K : AEK(·) = 1)− Pr(P R← Perm(n) : AP (·) = 1)
∣∣∣ .

Similarly, the function family is a function F : K × {0, 1}m → {0, 1}n, where, for any
K ∈ K, F (K, ·) = FK(·) is a function from {0, 1}m to {0, 1}n. Let Func(m,n) denote
the set of all functions from {0, 1}m to {0, 1}n. This set can be regarded as a function
family by considering that each function in Func(m,n) is specified by a unique string.
R is a random function if R

R← Func(m,n). Let A be an adversary with access to an
oracle, either FK(·) or a random function oracle R(·), and returns a bit. We say A is a
PRF-adversary for F , and we define

Advprf
F (A) def=

∣∣∣Pr(K R← K : AFK(·) = 1)− Pr(R R← Func(m,n) : AR(·) = 1)
∣∣∣ .

For an adversary A, A’s running time is denoted by time(A). The running time
is its actual running time (relative to some fixed RAM model of computation) and its
description size (relative to some standard encoding of algorithms). The details of the
big-O notation for the running time reference depend on the RAM model and the choice
of encoding.

The frame, nonce, and counter. The modes described in this paper take a positive
integer w as a parameter, and it is called a frame width. For fixed positive integer w (say,
w = 28), a w-block string is called a frame. Throughout this paper, we assume w ≥ 1.
A nonce N is a bit string, where for each pair of key and plaintext, it is used only once.

5

�
EK

�

�
EK

��
�

�L

�
EK

��
�

�L

�
EK

��
�

�L

x‖00 x‖01 x‖10 x‖11

y[0] y[1] y[2]

Figure 1: Example illustration of F . In this example, w = 3, ω = 1 + �log2 w� = 2, and
F : {0, 1}k × {0, 1}n−2 → ({0, 1}n)3 where FK(x) = (y[0], y[1], y[2]). Here x ∈ {0, 1}n−2,
y[0] = L⊕EK(x‖01), y[1] = L⊕EK(x‖10), y[2] = L⊕EK(x‖11), where L = EK(x‖00).

The length of the nonce is denoted by �nonce, and it is at most the block length. We also
use an n-bit string called a counter, ctr. This value is initialized based on the value of
the nonce, then it is incremented after each blockcipher invocations. The function for
increment is denoted by inc(·). It takes an n-bit string x (possibly a counter) and returns
the incremented x. We assume inc(x) = x + 1 mod 2n, but other implementations also
work, e.g., with LFSRs if x = 0n. For i > 0, inci(ctr) means ctr is incremented for i
times. Since the value is initialized based on the value of the nonce, there is no need to
maintain this value across the massages.

3 The Basic Tool: A New Pseudorandom Function F

In this section, we define a new function family F . It takes two parameters, a blockcipher,
and a frame width.

Fix the blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, and the frame width w. Define
ω = 1 + �log2 w�, i.e., we need ω bits to represent w. Now we define the function
family F : {0, 1}k × {0, 1}n−ω → ({0, 1}n)w as FK(x) = (y[0], . . . , y[w − 1]), where y[i] =
L⊕ EK(inci+1(x‖[0]ω)) for i = 0, . . . , w − 1 and L = EK(x‖[0]ω). We call L a mask. See
Figure 1 for an example.

We have the following information theoretic result on F .

Theorem 1 Let Perm(n) and w be the parameters for F . Let A be a PRF-adversary for
F making at most q oracle queries. Then

Advprf
F (A) ≤ (w + 1)4q3

22n+1
+

w(w + 1)q
2n+1

.

Notice that w is a constant and the security bound of Theorem 1 is “beyond the
birthday bound.” Also, if we set σ = qw (i.e., the total number of blocks that the
adversary obtains) and measure the security bound in terms of σ, we have Advprf

F (A) ≤
wσ3/22n−3 + wσ/2n, since 1 + w ≤ 2w.

The following definition is useful in proving Theorem 1.

Definition 1 Let x = (x0, . . . , xq−1) ∈ ({0, 1}n−ω)q be an arbitrary (n − ω)q-bit string.
We say that “x is distinct,” if xi = xj for 0 ≤ i < j ≤ q − 1. Similarly, let Y =
(Y0, . . . , Yq−1) ∈ ({0, 1}nw)q be an arbitrary nqw-bit string, where Yi = (yi[0], . . . , yi[w −
1]) ∈ ({0, 1}n)w for 0 ≤ i ≤ q − 1. We say that “Y is non-zero-distinct,” if there is no
equal bit strings in {0n, yi[0], . . . , yi[w − 1]} for any i s.t. 0 ≤ i ≤ q − 1.

6

Note that 0n is included in the definition for “Y is non-zero-distinct.” Suppose that
FK(xi) = (yi[0], . . . , yi[w − 1]). Then we always have yi[j] = 0n, and we also see that
yi[j] = yi[j′] for j = j′. We allow, for example, yi[j] = yi′ [j′] for i = i′. Intuitively,
Definition 1 is the set of possible input-output pairs, and for these pairs the following
lemma, which will be used in the proof of Theorem 1, shows that the distribution is close
to uniform. This is the crucial observation for the security improvement. There are no
collisions in “one frame,” but the collision occurs across the frames.

Lemma 1 Let x = (x0, . . . , xq−1) ∈ ({0, 1}n−ω)q and Y = (Y0, . . . , Yq−1) ∈ ({0, 1}nw)q be
arbitrarily fixed bit strings, where x is distinct and Y is non-zero-distinct. Then

pF

pR
≥ 1− q3(w + 1)4

22n+1
, (1)

where pF
def= Pr(P R← Perm(n) : FP (xi) = Yi for 0 ≤ i ≤ q − 1) and pR

def= Pr(R R←
Func(n− ω, nw) : R(xi) = Yi for 0 ≤ i ≤ q − 1).

The proof is based on the counting argument.

Proof (of Lemma 1). We first count the number of P ∈ Perm(n) which satisfies FP (xi) =
Yi for 0 ≤ i ≤ q−1. Let L0, . . . , Lq−1 be n-bit variables. Then the number of L0, . . . , Lq−1

which satisfy {Li, Li ⊕ yi[0], . . . , Li ⊕ yi[w − 1]} ∩ {Lj , Lj ⊕ yj [0], . . . , Lj ⊕ yj[w − 1]} = ∅
for any 0 ≤ i < j ≤ q − 1 is at least

∏
0≤i≤q−1(2

n − i(w + 1)2), since there are 2n

possibilities for L0, and once L0, . . . , Li−1 are fixed, we have at least 2n − i(w + 1)2

possibilities for Li. If we set Li = P (xi‖[0]ω), then it is possible to set P (inc(xi‖[0]ω)) =
Li ⊕ yi[0], . . . , P (incw(xi‖[0]ω)) = Li ⊕ yi[w − 1] uniquely. We have fixed q(w + 1) input-
output pairs of P , and the remaining 2n − q(w + 1) entries can be any value. Therefore,
the number of P ∈ Perm(n) which satisfies FP (xi) = Yi for 0 ≤ i ≤ q − 1 is at least
(2n − q(w + 1))!

∏
0≤i≤q−1(2

n − i(w + 1)2).
Then, the left hand side of (1) is at least

(2n)qw(2n − q(w + 1))!
∏

0≤i≤q−1(2
n − i(w + 1)2)

(2n)!

≥
∏

0≤i≤q−1

1− i(w+1)2

2n(
1− i(w+1)

2n

) (
1− i(w+1)+1

2n

)
· · ·

(
1− i(w+1)+w

2n

)

≥
∏

0≤i≤q−1

(
1− i(w + 1)2

2n

)(
1 +

i(w + 1)2

2n
+

w(w + 1)
2n+1

)
. (2)

We have used the fact that (1 − α)−1 ≥ 1 + α for |α| < 1, and the right hand side of (1)
is given by simplifying (2). �

We present the proof of Theorem 1 using Lemma 1.

Proof (of Theorem 1). Without loss of generality, we assume that A makes exactly q
oracle queries and A does not repeat an oracle query. Also, since A is computationally
unbounded, we assume that A is deterministic. Now we can regard A as a function
fA : ({0, 1}nw)q → {0, 1}. To see this, let Y = (Y0, . . . , Yq−1) be an arbitrary nqw-bit

7

string, where each Yi is nw bits. The first query, x0, is determined by A. If we return Yi−1

as the answer for xi−1, the next query xi is determined, and finally, if we return Yq−1 as
the answer for xq−1, the output of A, either 0 or 1, is determined. Therefore, the output
of A and the q queries, x0, . . . , xq−1, are all determined by fixing Y . Note that for any
Y , the corresponding sequence of queries x = (x0, . . . , xq−1) is distinct. Let vone = {Y ∈
({0, 1}nw)q | fA(Y) = 1}, and vdist = {Y ∈ ({0, 1}nw)q | Y is non-zero-distinct}. Observe
that |vdist| = ((2n − 1)(2n − 2) · · · (2n −w))q ≥ 2nwq(1− qw(w + 1)/2n+1), and therefore,
we have

|vone ∩ vdist| ≥ |vone| − 2nwqqw(w + 1)/2n+1. (3)

Let PR
def= Pr(R R← Func(n− ω, nw) : AR(·) = 1). Then we have

PR =
∑

Y ∈vone

pR =
|vone|
(2nw)q

. (4)

On the other hand, let PF
def= Pr(P R← Perm(n) : AFP (·) = 1). Then

PF =
∑

Y ∈vone

pF ≥
∑

Y ∈(vone∩vdist)

pF ≥
(

1− q3(w + 1)4

22n+1

) ∑
Y ∈(Yone∩Ydist)

1
(2nw)q

where the last inequality follows from Lemma 1. Then PF is at least(
1− q3(w + 1)4

22n+1

) |vone ∩ vdist|
(2nw)q

≥
(

1− q3(w + 1)4

22n+1

)(
PR − qw(w + 1)

2n+1

)

from (3) and (4). Now, we have PF ≥ PR − q3(w + 1)4/22n+1 − qw(w + 1)/2n+1, and by
applying the same argument to 1 − PF and 1 − PR, we have 1 − PF ≥ 1 − PR − q3(w +
1)4/22n+1 − qw(w + 1)/2n+1. �

4 A Relaxed Version F+

In F , if the input is x, then the mask is always generated with x‖[0]ω . In this section, we
present a slightly relaxed version of F , called F+, which removes this restriction. Similarly
to F , F+ takes two parameters, a blockcipher E : {0, 1}k×{0, 1}n → {0, 1}n, and a frame
width w.

Now the function family F+ : {0, 1}k × {0, 1}n → ({0, 1}n)w is defined as F+
K (x) =

(y[0], . . . , y[w − 1]), where y[i] = L⊕EK(inci+1(x)) for i = 0, . . . , w − 1 and L = EK(x).
Observe that F+ takes n-bit x as input, and the mask is generated with x. Also, it is

not hard to show that F+ is a good PRF as long as there is no collision in the input to
E.

Let A be an adversary that makes at most q oracle queries and let xi ∈ {0, 1}n
denote A’s i-th query. Define Xi = {xi, inc(xi), inc2(xi), . . . , incw(xi)}, i.e., Xi is the set
of input to E in the i-th query. We say that A is input-respecting if Xi ∩Xj = ∅ for any
0 ≤ i < j ≤ q − 1, regardless of oracle responses and regardless of A’s internal coins.

We have the following information theoretic result on F+.

Corollary 1 Let Perm(n) and w be the parameters for F+. Let A be a PRF-adversary
for F+ making at most q oracle queries, where A is input-respecting. Then

Advprf
F+(A) ≤ (w + 1)4q3

22n+1
+

w(w + 1)q
2n+1

.

The proof is almost the same as that of Theorem 1, and omitted.

8

Algorithm CENC.EncK(N,M)
100 ctr← (N‖0n−�nonce)
101 l← �|M |/n�
102 S ← CENC.KSGenK(ctr, l)
103 C ←M ⊕ first(|M |, S)
104 return C

Algorithm CENC.DecK(N,C)
200 ctr← (N‖0n−�nonce)
201 l← �|C|/n�
202 S ← CENC.KSGenK(ctr, l)
203 M ← C ⊕ first(|C|, S)
204 return M

Algorithm CENC.KSGenK(ctr, l)
300 for j ← 0 to �l/w� − 1 do
301 L← EK(ctr)
302 ctr← inc(ctr)
303 for i← 0 to w − 1 do
304 Swj+i ← EK(ctr)⊕ L
305 ctr← inc(ctr)
306 if wj + i = l − 1 then
307 S ← (S0‖S1‖ · · · ‖Sl−1)
308 return S

Figure 2: Definition of the encryption algorithm CENC.Enc (left top), the decryption al-
gorithm CENC.Dec (left bottom), and the keystream generation algorithm CENC.KSGen
(right), which is used in both encryption and decryption.

N‖0n−�nonce

↓
ctr

�� inc
�

EK

�

�� inc
�

EK

�

�� inc
�

EK

�

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

�� inc
�

EK

��
�

�L

S0 S1 S2 S3 S4 S5 S6

�

Figure 3: Illustration of the keystream generation algorithm. This example uses w = 3 and
outputs l = 7 blocks of keystream S = (S0, . . . , S6). This S is used in both encryption and
decryption. The mask L is updated after generating w blocks of keystream. The counter
ctr is incremented for l + �l/w� = 10 times, and there are 10 blockcipher invocations.

5 CENC: Cipher-based ENCryption

In this section, we propose a new (nonce-based) encryption scheme, CENC. It takes three
parameters, a blockcipher, a nonce length, and a frame width.

Fix the blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the nonce length �nonce and the
frame width w, where 1 ≤ �nonce < n. CENC consists of two algorithms, the encryption
algorithm (CENC.Enc) and the decryption algorithm (CENC.Dec). Both algorithms
internally use the keystream generation algorithm (CENC.KSGen). These algorithms are
defined in Figure 2. A picture illustrating CENC.KSGen is given in Figure 3.

The encryption algorithm CENC.Enc has the following syntax. CENC.Enc : Key ×
Nonce × Plaintext → Ciphertext, where Key is {0, 1}k , Nonce is {0, 1}�nonce , and Plaintext
and Ciphertext are {M ∈ {0, 1}∗ | |M | ≤ n2�max}, i.e., the set of bit strings at most �max

blocks, where �max is the largest integer satisfying �max ≤ w(2n−�nonce − 1)/(w + 1). It
takes the key K, the nonce N , and the plaintext M to return the ciphertext C. We

9

write C ← CENC.EncK(N,M). The decryption algorithm CENC.Dec : Key × Nonce ×
Ciphertext → Plaintext takes K, N , C to return M . We write M ← CENC.DecK(N,C).
For any K, N , and M , we have M ← CENC.DecK(N,CENC.EncK(N,M)).

CENC.Enc and CENC.Dec call CENC.SKGen to generate the keystream of required
length, where the length is in blocks. The encryption (resp. decryption) is just the xor of
the plaintext (resp. ciphertext) and the keystream.

The keystream generation algorithm, CENC.KSGen, takes K, the initial counter value
ctr, and a non-negative integer l. The output is a keystream S, where the length of S is
l blocks. We write S ← CENC.KSGenK(ctr, l).

In CENC.KSGen, we first generate an n-bit mask, L. �l/w� is the number of frames,
incomplete frame counts as one frame. We see that �l/w� masks are generated in line
301. For each mask, w blocks of the keystream are generated in line 304 (except for the
last frame, as the last frame may have fewer than w blocks). If l blocks of keystream
are generated in line 306, the resulting S is returned in line 308. Observe that the
blockcipher is invoked for l + �l/w� times, since we generate �l/w� masks and we have l
blocks of keystream, where each block of keystream requires one blockcipher invocation.

Discussion and default parameters. CENC takes the blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n, the nonce length �nonce (1 ≤ �nonce < n) and the frame width w, as the
parameters. With these parameters, CENC can encrypt at most 2�nonce plaintexts, and
the maximum length of the plaintext is �max blocks. Note that �max is derived by solving
�max+��max/w� ≤ 2n−�nonce in �max, and in general, the bound on �max is �max ≤ 2n−�nonce−1

since ��max/w� ≤ �max. As we will present in Section 6, the security bound of CENC is
(w + 1)4σ̂3/w322n+1 + (w + 1)σ̂/2n+1, where σ̂ is (roughly) the total number of blocks
processed by one key.

Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce = n/2, and
w = 28 = 256. For example, if we use the AES, CENC can encrypt at most 264 plaintexts,
the maximum length of the plaintext is 263 blocks (237GBytes), and the security bound is
σ̂3/2248 + σ̂/2121 (we used (w + 1)4/w3 < 261 < 29), thus σ̂ should be sufficiently smaller
that 282 blocks (256GBytes).

The frame width, w, should be large enough so that we can implement CENC effi-
ciently. On the other hand, it affects the security bound. We chose w = 28 = 256, which
implies 256 blocks of keystream are generated with 257 blockcipher invocations, thus the
cost is about 0.4% compared to CTR mode. We see that the efficiency loss is very small
in both software and hardware. Also, the security bound is low enough with this value of
w. We do not recommend w > 28 (when n = 128) because of the security loss.

64-bit blockciphers. We do not claim that CENC is generally useful for n = 64,
since there are restrictions on the nonce length (thus the number of plaintexts), and the
plaintext length.

For example, if we use Triple-DES and (�nonce, w) = (32, 256), CENC can encrypt at
most 232 plaintexts, and the maximum length of the plaintext is 231 blocks (16GBytes),
which may not be enough for general applications (still, it is comparable to CTR mode).
In this case, the security bound is σ̂3/2120 + σ̂/257, which implies σ̂ should be sufficiently
smaller that 240 blocks (213GBytes).

The limitations of the nonce length and the plaintext length can be removed if we use
a counter (instead of a nonce) that is maintained across the plaintexts. This “counter

10

version of CENC” is more suitable for 64-bit blockciphers.

6 Security of CENC

CENC is a symmetric encryption scheme. Before showing the security results on CENC,
we first formally define what we mean by symmetric encryption schemes, and what we
mean by such schemes to be secure.

Symmetric encryption schemes. A (nonce-based) symmetric encryption scheme is
a pair of algorithms SE = (E ,D) where E is a deterministic encryption algorithm E :
Key × Nonce × Plaintext → Ciphertext and D is a deterministic decryption algorithm
D : Key × Nonce × Ciphertext → Plaintext. The key space Key is a set of keys, and is
a nonempty set having a distribution (the uniform distribution when the set is finite).
The nonce space Nonce, the plaintext space Plaintext, and the ciphertext space Ciphertext
are nonempty sets of strings. We write EK(N,M) for E(K,N,M) and DK(N,C) for
D(K,N,C). We require that DK(N, EK(N,M)) = M for all K ∈ Key, N ∈ Nonce and
M ∈ Plaintext.

Nonce-respecting adversary. Let A be an adversary with access to an encryption
oracle EK(·, ·). This oracle, on input (N,M), returns the ciphertext C ← EK(N,M).
Let (N0,M0), . . . , (Nq−1,Mq−1) denote its oracle queries. The adversary is said to be
nonce-respecting if N0, . . . , Nq−1 are always distinct, regardless of oracle responses and
regardless of A’s internal coins.

Privacy of symmetric encryption schemes. We adopt the strong notion of privacy
for nonce-based encryption schemes from [23]. This notion, which we call indistinguisha-
bility from random strings, provably implies the more standard notions given in [1].

Let A be an adversary with access to an oracle, either the encryption oracle EK(·, ·)
or R(·, ·), and returns a bit. The R(·, ·) oracle, on input (N,M), returns a random string
of length |EK(N,M)|. We say that A is a PRIV-adversary for SE . We assume that any
PRIV-adversary is nonce-respecting. The advantage of PRIV-adversary A for SE = (E ,D)
having key space Key is

Advpriv
SE (A) def=

∣∣∣Pr(K R← Key : AEK(·,·) = 1)− Pr(AR(·,·) = 1)
∣∣∣ .

Security results on CENC. Let A be a nonce-respecting PRIV-adversary for CENC,
and assume that A makes at most q oracle queries, and the total length of these queries
is at most σ blocks, where “the total length of queries” is defined as follows: if A makes
q queries (N0,M0), . . . , (Nq−1,Mq−1), then the total length of queries is σ = �|M0|/n� +
· · · + �|Mq−1|/n�, i.e, the total number of blocks of plaintexts. We have the following
information theoretic result.

Theorem 2 Let Perm(n), �nonce, and w be the parameters for CENC. Let A be a nonce-
respecting PRIV-adversary for CENC making at most q oracle queries, and the total length
of these queries is at most σ blocks. Then

Advpriv
CENC(A) ≤ (w + 1)4σ̂3

w322n+1
+

(w + 1)σ̂
2n+1

, (5)

11

PRF-adversary B
If A makes a query (Ni,Mi):
100 ctr← (Ni‖0n−�nonce)
101 l← �|Mi|/n�
102 S ← CENC.KSGen.Sim(ctr, l)
103 Ci ←Mi ⊕ first(|Mi|, S)
104 return Ci

If A returns b:
200 output b

Algorithm CENC.KSGen.Sim(ctr, l)
300 for j ← 0 to �l/w� − 1 do
301 Yj ← O(ctr)
302 ctr← incw+1(ctr)
303 Y ← (Y0, . . . , Y�l/w�−1)
304 Y ← first(nl, Y)
305 return Y

Figure 4: The PRF-adversary B for F+ based on the PRIV-adversary A for CENC.

where σ̂ = σ + qw.

If we use the rough inequality of w + 1 ≤ 2w, then we have the simpler form,
Advpriv

CENC(A) ≤ wσ̂3/22n−3 + wσ̂/2n.
The proof of Theorem 2 is based on the contradiction argument. If there exists a

nonce-respecting PRIV-adversary A such that Advpriv
CENC(A) is larger than the right hand

side of (5), then we can construct an input-respecting PRF-adversary B for F+ which
contradicts Corollary 1. The proof is given below.

Proof (of Theorem 2). Suppose for a contradiction that Advpriv
CENC(A) is larger than

the right hand side of (5). Let the oracle O be either F+
P (·) or R(·) ∈ Func(n, nw).

Consider the PRF-adversary B for F+ in Figure 4, where B uses the nonce-respecting
PRIV-adversary A for CENC as a subroutine.

We see that if O is F+
P (·), then B gives A a perfect simulation of CENC.Enc, since

F+
P (·) corresponds to “one frame” of CENC.KSGen, and this implies that the outputs of

CENC.KSGen.Sim(ctr, l) and CENC.KSGenP (ctr, l) are the same. Therefore Pr(P R←
Perm(n) : BF+

P (·) = 1) = Pr(P R← Perm(n) : ACENC.EncP (·,·) = 1). Also, it is easy to check
that B is input-respecting. On the other hand, if O is R(·), then B gives A a perfect
simulation of R. That is, Pr(R R← Func(n, nw) : BR(·) = 1) = Pr(AR(·,·) = 1). Therefore,
we have Advprf

F+(B) = Advpriv
CENC(A).

Suppose that the queries made by A are (N0,M0), . . . , (Nq−1,Mq−1). If we let li =
�|Mi|/n�, then B makes �l0/w� + · · · + �lq−1/w� queries, which is at most (l0 + · · · +
lq−1)/w + q ≤ σ/w + q = σ̂/w queries. Note that this holds regardless of the value of
l0, . . . , lq−1. From the assumption for a contradiction, Advpriv

CENC(A) is larger than the
right hand side of (5), which implies Advprf

F+(B) > (w + 1)4σ̂3/w322n+1 + (w + 1)σ̂/2n+1.
This contradicts Corollary 1. �

Given Theorem 2, we have the following complexity theoretic result.

Corollary 2 Let E : {0, 1}k × {0, 1}n → {0, 1}n, �nonce, and w be the parameters for
CENC. Let A be a nonce-respecting PRIV-adversary for CENC making at most q oracle
queries, and the total length of these queries is at most σ blocks. Then there is a PRP-
adversary B for E making at most (w + 1)σ̂/w oracle queries, time(B) = time(A) +
O(nσ̂w), and Advprp

E (B) ≥ Advpriv
CENC(A)− wσ̂3/22n−3 − wσ̂/2n, where σ̂ = σ + qw.

12

Proof. The proof is standard, and we only check the number of queries made by B. In
simulating A’s oracle by using B’s oracle, suppose that the length of the i-th query made
by A is li blocks. Then B makes at most (w + 1)(�l0/w�+ · · ·+ �lq−1/w�) queries, which
is at most (w + 1)(σ/w + q) = (w + 1)σ̂/w queries. This holds regardless the value of
l0, . . . , lq−1. �

7 CHM: CENC with Hash-based MAC

In this section, we present a new (nonce-based) authenticated-encryption with associated-
data (AEAD) scheme, CHM. It takes six parameters, a blockcipher, a nonce length, a tag
length, a frame width, and two constants.

Fix the blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, the nonce length �nonce, the tag
length τ , the frame width w, and two n-bit constants const0 and const1. We require that
1 ≤ �nonce < n, 1 ≤ τ ≤ n, const0 = const1, and first(1, const0) = first(1, const1) = 1
(the most significant bits of const0 and const1 are both 1).

CHM consists of two algorithms, the encryption algorithm (CHM.Enc) and the decryp-
tion algorithm (CHM.Dec). These algorithms are defined in Figure 5. Both algorithms
use the keystream generation algorithm (CHM.KSGen) and a hash function (CHM.Hash).
CHM.KSGen is equivalent to CENC.KSGen defined in Figure 2, and the hash function
CHM.Hash is defined in Figure 6.

The syntax of the encryption algorithm is CHM.Enc : Key × Nonce × Header ×
Plaintext → Ciphertext × Tag, where the key space Key is {0, 1}k , the nonce space Nonce
is {0, 1}�nonce , and the header space Header is {0, 1}∗. The plaintext space Plaintext and
ciphertext space Ciphertext are {M ∈ {0, 1}∗ | |M | ≤ n2�max}, where �max is the largest
integer satisfying �max ≤ w(2n−�nonce−1 − 1)/(w + 1)− 1. The tag space Tag is {0, 1}τ . It
takes the key K, the nonce N , the header H, and the plaintext M to return the ciphertext
C and the tag T . We write (C, T) ← CHM.EncK(N,H,M). The decryption algorithm
CHM.Dec : Key×Nonce×Header×Ciphertext×Tag→ Plaintext∪{reject} takes K, N , H,
C and T to return M or a special symbol reject. We write M ← CHM.DecK(N,H,C, T)
or reject← CHM.DecK(N,H,C, T).

CHM is the natural combination of CENC and a universal hash function-based MAC
(Wegman-Carter MAC). As a universal hash function, we chose the standard polynomial-
based hash, since it is efficient in both software and hardware, and it is well studied.
The multiplication is done in the finite field GF(2n) using a canonical polynomial to
represent field elements. The suggested canonical polynomial is the lexicographically first
polynomial among the irreducible polynomials of degree n that have a minimum number
of nonzero coefficients. For n = 128 the indicated polynomial is x128 + x7 + x2 + x + 1.

Discussion and default parameters. CHM takes six parameters, the blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n, the nonce length �nonce, the tag length τ , the frame
width w, and two n-bit constants const0 and const1. With these parameters, CHM can
encrypt at most 2�nonce plaintext-header pairs, and the maximum length of the plaintext
is �max blocks (�max is derived by solving �max +1+ �(�max +1)/w� ≤ 2n−�nonce−1 in �max).
As we will present in Section 8, the security bound of CHM is (w + 1)3σ̃2/w222n−3 +
(w + 1)4σ̃3/w322n+1 + 1/2n + (w + 1)σ̃/2n+1 for privacy, and (w + 1)3σ̃2/w222n−3 + (w +
1)4σ̃3/w322n+1 + 1/2n + (w + 1)σ̃/2n+1 + (1 + Hmax + Mmax)/2τ for authenticity, where

13

Algorithm CHM.EncK(N,H,M)
100 S0 ← EK(const0)
101 S1 ← EK(const1)
102 l ← �|M |/n�
103 ctr← (0‖N‖0n−�nonce−1)
104 S ← CHM.KSGenK(ctr, l + 1)
105 S2 ← first(n, S)
106 S3 ← last(nl, S)
107 C ←M ⊕ first(|M |, S3)
108 Hash0 ← CHM.HashS0(C)
109 Hash1 ← CHM.HashS1(H)
110 T ← Hash0 ⊕Hash1 ⊕ S2

111 T ← first(τ, T)
112 return (C, T)

Algorithm CHM.DecK(N,H,C, T)
200 S0 ← EK(const0)
201 S1 ← EK(const1)
202 l← �|C|/n�
203 ctr← (0‖N‖0n−�nonce−1)
204 S ← CHM.KSGenK(ctr, l + 1)
205 S2 ← first(n, S)
206 Hash0 ← CHM.HashS0(C)
207 Hash1 ← CHM.HashS1(H)
208 T ′ ← Hash0 ⊕Hash1 ⊕ S2

209 T ′ ← first(τ, T ′)
210 if T ′ = T then return reject
211 S3 ← last(nl, S)
212 M ← C ⊕ first(|C|, S3)
213 return M

Figure 5: Definition of the encryption algorithm CHM.Enc (left), and the decryption
algorithm CHM.Dec (right). CHM.KSGen is equivalent to CENC.KSGen in Figure 2,
and CHM.Hash is defined in Figure 6.

Algorithm CHM.HashS(M)
100 M ←M‖10n−1−(|M | mod n)

101 l← |M |/n
102 Hash← 0n

103 for i← 0 to l − 1 do
104 Hash← (Hash⊕Mi) · S
105 return Hash

Figure 6: Definition of CHM.Hash : {0, 1}n × {0, 1}∗ → {0, 1}n. Mi is the i-th block of
M‖10n−1−(|M | mod n), i.e., (M0, . . . ,Ml−1) = M‖10n−1−(|M | mod n). Multiplication in line
104 is in GF(2n).

σ̃ is (roughly) the total number of blocks processed by one key, Mmax is the maximum
block length of plaintexts, and Hmax is the maximum block length of headers.

Our default parameters are, E is any blockcipher such that n ≥ 128, �nonce = n/2− 1,
τ ≥ 96, w = 28 = 256, const0 = 1n−1‖0 and const1 = 1n.

With these parameters, if we use the AES, CHM can encrypt at most 263 plaintexts-
header pairs, and the maximum length of the plaintext is 263 blocks (237GBytes), and
the security bounds are σ̃3/2242 + σ̃/2120 for privacy, and σ̃3/2242 + σ̃/2120 + (1 + Hmax +
Mmax)/2τ for authenticity. This implies σ̃ should be sufficiently smaller that 280 blocks
(254GBytes), and Hmax and Mmax should be small enough so that (1 +Hmax +Mmax)/2τ

is low enough.

14

8 Security of CHM

CHM is an authenticated-encryption with associated-data (AEAD) scheme. Before show-
ing the security results on CHM, we first formally define what we mean by AEAD schemes,
and what we mean by such schemes to be secure.

An AEAD scheme. A (nonce-based) authenticated-encryption with associated-data
(AEAD) scheme is a pair of algorithms AE = (E ,D) where E is a deterministic encryption
algorithm E : Key×Nonce×Header×Plaintext→ Ciphertext×Tag and D is a deterministic
decryption algorithm D : Key×Nonce×Header× Ciphertext×Tag→ Plaintext∪ {reject}.
The key space Key is a set of keys. The nonce space Nonce and the header space Header
(also called the space of associated data), the plaintext space Plaintext and the ciphertext
space Ciphertext are nonempty sets of strings. (We note that there is a more general treat-
ment where Ciphertext and Tag are not separated. See [7]. We separate them for simplic-
ity.) We write EK(N,H,M) for E(K,N,H,M) and DK(N,H,C, T) for D(K,N,H,C, T).
We require that DK(N,H, EK(N,H,M)) = M for all K ∈ Key, N ∈ Nonce, H ∈ Header
and M ∈ Plaintext.

Privacy of AEAD schemes. We follow the security notion from [7]. Let A be an
adversary with access to an oracle, either the encryption oracle EK(·, ·, ·) or R(·, ·, ·), and
returns a bit. The R(·, ·, ·) oracle, on input (N,H,M), returns a random string of length
|EK(N,H,M)|. We say that A is a PRIV-adversary for AE . We assume that any PRIV-
adversary is nonce-respecting (i.e., if (N0,H0,M0), . . . , (Nq−1,Hq−1,Mq−1) is A’s oracle
queries, N0, . . . , Nq−1 are always distinct, regardless of oracle responses and regardless of
A’s internal coins). The advantage of PRIV-adversary A for AEAD scheme AE = (E ,D)
having key space Key is

Advpriv
AE (A) def=

∣∣∣Pr(K R← Key : AEK(·,·,·) = 1)− Pr(AR(·,·,·) = 1)
∣∣∣ .

Authenticity of AEAD schemes. A notion of authenticity of ciphertext for AEAD
schemes was formalized in [23, 22] following [14, 6, 5]. This time, let A be an adversary
with access to an encryption oracle EK(·, ·, ·) and returns a tuple, (N,H,C, T). This tuple
is called a forgery attempt. We say that A is an AUTH-adversary for AE. We assume
that any AUTH-adversary is nonce-respecting. (The condition is understood to apply
only to the adversary’s encryption oracle. Thus a nonce used in an encryption-oracle
query may be used in a forgery attempt.) We say A forges if A returns (N,H,C, T) such
that DK(N,H,C, T) = reject but A did not make a query (N,H,M) to EK(·, ·, ·) that
resulted in a response (C, T). That is, adversary A may never return a forgery attempt
(N,H,C, T) such that the encryption oracle previously returned (C, T) in response to a
query (N,H,M). Then the advantage of AUTH-adversary A for AEAD scheme AE =
(E ,D) having key space Key is

Advauth
AE (A) def= Pr(K R← Key : AEK(·,·,·) forges).

Privacy results on CHM. Let A be a nonce-respecting PRIV-adversary for CHM,
and assume that A makes at most q oracle queries, and the total plaintext length of these
queries is at most σ blocks, where “the total plaintext length of queries” is defined as

15

follows: if A makes queries (N0,H0,M0), . . . , (Nq−1,Hq−1,Mq−1), then σ = �|M0|/n� +
· · · + �|Mq−1|/n�, i.e., the total number of blocks of plaintexts. We have the following
information theoretic result.

Theorem 3 Let Perm(n), �nonce, τ , w, const0 and const1 be the parameters for CHM.
Let A be a nonce-respecting PRIV-adversary making at most q oracle queries, and the
total plaintext length of these queries is at most σ blocks. Then

Advpriv
CHM(A) ≤ (w + 1)3σ̃2

w222n−3
+

(w + 1)4σ̃3

w322n+1
+

1
2n

+
(w + 1)σ̃

2n+1
, (6)

where σ̃ = σ + q(w + 1).

Note that there is no restriction on the header length. If we use w + 1 ≤ 2w, we have
the simpler form, Advpriv

CHM(A) ≤ wσ̃2/22n−6 + wσ̃3/22n−3 + 1/2n + wσ̃/2n.
The proof of Theorem 3 is given in Section 9. From Theorem 3, we have the following

complexity theoretic result.

Corollary 3 Let E : {0, 1}k × {0, 1}n → {0, 1}n, �nonce, τ , w, const0 and const1 be the
parameters for CHM. Let A be a nonce-respecting PRIV-adversary making at most q oracle
queries, and the total plaintext length of these queries is at most σ blocks. Then there is a
PRP-adversary B for E making at most (w+1)σ̃/w oracle queries, time(B) = time(A)+
O(nσ̃w), and Advprp

E (B) ≥ Advpriv
CHM(A)−wσ̃2/22n−6−wσ̃3/22n−3−1/2n−wσ̃/2n, where

σ̃ = σ + q(w + 1).

Proof. Suppose that the plaintext length of the i-th query made by A is li blocks. Then
B makes at most (w + 1)(�(l0 + 1)/w� + · · · + �(lq−1 + 1)/w�) queries, which is at most
(w+1)(σ/w+q/w+q) = (w+1)σ̃/w queries. This holds regardless the value of l0, . . . , lq−1.
The rest of the proof is standard. �

Authenticity results on CHM. Let A be an AUTH-adversary for CHM, and assume
that A makes at most q oracle queries (including the final forgery attempt), the total
plaintext length of these queries is at most σ blocks, the maximum plaintext length of
these queries is at most Mmax blocks, and the maximum header length of these queries
is at most Hmax blocks. Here, if A makes queries (N0,H0,M0), . . . , (Nq−2,Hq−2,Mq−2),
and returns the forgery attempt (N∗,H∗, C∗, T ∗), then σ, Mmax and Hmax are defined as

⎧⎪⎨
⎪⎩

σ
def= �|M0|/n�+ · · ·+ �|Mq−2|/n�+ �|C∗|/n�,

Mmax
def= max{�|M0|/n�, . . . , �|Mq−2|/n�, �|C∗|/n�},

Hmax
def= max{�|H0|/n�, . . . , �|Hq−2|/n�, �|H∗|/n�}.

We say A’s query resource is (q, σ,Mmax,Hmax). We have the following information
theoretic result.

Theorem 4 Let Perm(n), �nonce, τ , w, const0 and const1 be the parameters for CHM.
Let A be a nonce-respecting AUTH-adversary whose query resource is (q, σ,Mmax,Hmax).
Then Advauth

CHM(A) is at most

(w + 1)3σ̃2

w222n−3
+

(w + 1)4σ̃3

w322n+1
+

1
2n

+
(w + 1)σ̃

2n+1
+

1 + Hmax + Mmax

2τ
, (7)

where σ̃ = σ + q(w + 1).

16

If we use w + 1 ≤ 2w, we have the simpler form, Advauth
CHM(A) ≤ wσ̃2/22n−6 +

wσ̃3/22n−3 + 1/2n + wσ̃/2n + (1 + Hmax + Mmax)/2τ .
The proof of Theorem 4 is given in Section 9. From Theorem 4, we have the following

complexity theoretic result.

Corollary 4 Let E : {0, 1}k ×{0, 1}n → {0, 1}n, �nonce, τ , w, const0, and const1 be the
parameters for CHM. Let A be a nonce-respecting AUTH-adversary whose query resource
is (q, σ,Mmax,Hmax). Then there is a PRP-adversary B for E making at most (w +
1)σ̃/w oracle queries, time(B) = time(A) + O(nσ̃w), and Advprp

E (B) ≥ Advauth
CHM(A) −

wσ̃2/22n−6−wσ̃3/22n−3−1/2n +wσ̃/2n− (1+Hmax +Mmax)/2τ , where σ̃ = σ+q(w+1).

The proof is almost the same as that of Corollary 3, and omitted.

9 Security Proofs of CHM

Another security result on the basic tool. To prove Theorem 3 and Theorem 4,
consider the function family F+ defined in Section 4. We show a different security result
on F+.

First, recall the definition of F+ from Section 4 (but we will concentrate on the
information theoretic result). Let P

R← Perm(n) be a random permutation, and fix the
frame width w. Let ω = 1 + �log2 w�. Then F+ : Perm(n) × {0, 1}n → ({0, 1}n)w is
F+

K (x) = (y[0], . . . , y[w − 1]), where y[i] = L ⊕ EK(inci+1(x)) for i = 0, . . . , w − 1 and
L = EK(x).

Now let A be an adversary. This A is the PRF-adversary for F+, but we give A
additional information, i.e., we allow A to access the blockcipher itself. That is, A is given
either a pair of oracles (P (·), F+

P (·)), or a pair of random function oracles (R0(·), R1(·)),
where R0 ∈ Func(n, n) and R1 ∈ Func(n, nw), with the following rules.

• If Wi ∈ {0, 1}n is the i-th query for the first oracle (either P (·) or R0(·)), then
first(1,Wi) = 1 must hold.

• If xj ∈ {0, 1}n is the j-th query for the second oracle (either F+
P (·) or R1(·)), then

first(1, xj) = 0 must hold. That is, input/output samples from the first oracle are
not used in F+

P (·) oracle.

• A does not repeat the same query to its first oracle.

• A is input-respecting with respect to the second oracle (see Section 4).

We say A is msb-input-respecting if the above rules hold regardless of oracle responses
and regardless of A’s internal coins. Define Advprf

Perm(n),F+(A) as

∣∣∣Pr(P R← Perm(n) : AP (·),F+
P (·) = 1)

− Pr(R0
R← Func(n, n), R1

R← Func(n, nw) : AR0(·),R1(·) = 1)
∣∣∣

and we say A is a PRF-adversary for (Perm(n), F+).
We have the following information theoretic result.

17

Theorem 5 Let Perm(n) and w be the parameters for F+. Let A be an msb-input-
respecting PRF-adversary for (Perm(n), F+) making at most r oracle queries to its first
oracle and at most q oracle queries to its second oracle. Then

Advprf
Perm(n),F+(A) ≤ r2q2(w + 1)3

22n−1
+

q3(w + 1)4

22n+1
+

r(r − 1)
2n+1

+
qw(w + 1)

2n+1
.

The proof of Theorem 5 is similar to the proof of Theorem 1, but it is not derived
directly (and Theorem 1 is not a corollary of Theorem 5 because of the most significant
bit restriction). To prove Theorem 5, we need the following lemma.

Lemma 2 Let x = (x0, . . . , xq−1) ∈ ({0, 1}n)q and Y = (Y0, . . . , Yq−1) ∈ ({0, 1}nw)q be
arbitrarily fixed bit strings, where x is distinct and Y is non-zero-distinct (see Definition
1). Also, let W = (W0, . . . ,Wr−1) ∈ ({0, 1}n)r and Z = (Z0, . . . , Zr−1) ∈ ({0, 1}n)r be
arbitrarily fixed bit strings, where Wi = Wj and Zi = Zj for any 0 ≤ i < j ≤ r − 1 (i.e.,
W and Z are distinct). Assume {x0, . . . , xq−1} ∩ {W0, . . . ,Wr−1} = ∅. Then

pF+

pR
≥ 1− r2q2(w + 1)3

22n−1
− q3(w + 1)4

22n+1
, (8)

where pF+
def= Pr(P R← Perm(n) : P (Wj) = Zj for 0 ≤ j ≤ r − 1 and F+

P (xi) = Yi for

0 ≤ i ≤ q − 1) and pR
def= Pr(R0

R← Func(n, n), R1
R← Func(n, nw) : R0(Wj) = Zj for

0 ≤ j ≤ r − 1 and R1(xi) = Yi for 0 ≤ i ≤ q − 1).

Proof. We first count the number of P ∈ Perm(n) which satisfies P (Wj) = Zj for
0 ≤ j ≤ r−1 and F+

P (xi) = Yi for 0 ≤ i ≤ q−1. Let Yi = (yi[0], . . . , yi[w−1]) ∈ ({0, 1}n)w

for 0 ≤ i ≤ q−1, and let L0, . . . , Lq−1 be n-bit variables. Then the number of L0, . . . , Lq−1

which satisfy

• {Z0, . . . , Zr−1} ∩ {Li, Li ⊕ yi[0], . . . , Li ⊕ yi[w − 1]} = ∅ for any 0 ≤ i ≤ q − 1, and

• {Li, Li ⊕ yi[0], . . . , Li ⊕ yi[w − 1]} ∩ {Lj, Lj ⊕ yj [0], . . . , Lj ⊕ yj[w − 1]} = ∅ for any
0 ≤ i < j ≤ q − 1,

is at least
∏

0≤i≤q−1(2
n − r(w + 1)− i(w + 1)2), since there are 2n− r(w + 1) possibilities

for L0, and once L0, . . . , Li−1 are fixed, we have at least 2n − r(w + 1) − i(w + 1)2

possibilities for Li. If we set P (W0) = Z0, . . . , P (Wr−1) = Zr−1 and Li = P (xi), then
it is possible to set P (inc(xi)) = Li ⊕ yi[0], P (inc2(xi)) = Li ⊕ yi[1], . . . , P (incw(xi)) =
Li ⊕ yi[w − 1] uniquely. We have fixed r + q(w + 1) input-output pairs of P , and the
remaining 2n−r−q(w+1) entries can be any value. Therefore, the number of P ∈ Perm(n)
which satisfies P (Wj) = Zj for 0 ≤ j ≤ r− 1 and F+

P (xi) = Yi for 0 ≤ i ≤ q− 1 is at least
(2n − r − q(w + 1))!

∏
0≤i≤q−1(2

n − r(w + 1)− i(w + 1)2).
Then, the left hand side of (8) is at least

(2n)r(2n)qw(2n − r − q(w + 1))!
∏

0≤i≤q−1(2
n − r(w + 1)− i(w + 1)2)

(2n)!
, (9)

and the right hand side of (8) is given by simplifying (9). �

We now present the proof of Theorem 5.

18

Proof (of Theorem 5). Without loss of generality, we assume that A makes exactly r oracle
queries to its first oracle, and exactly q oracle queries to its second oracle, and A does not
repeat an oracle query to the same oracle. Also, since A is computationally unbounded,
we assume that A is deterministic. Let Wi denote the query for the first oracle, and
xj denote the query for the second oracle. Now we can regard A as a function fA :
({0, 1}n)r × ({0, 1}nw)q → {0, 1}. To see this, let Z = (Z0, . . . , Zr−1) be an nr-bit string,
and let Y = (Y0, . . . , Yq−1) be an nqw-bit string, where each Zi is n bits and Yi is nw bits.
Observe that if we return Zi as the answer Wi for 0 ≤ i ≤ r−1 and return Yj as the answer
xj for 0 ≤ i ≤ q − 1, the output of A, either 0 or 1, is determined. Therefore, the output
of A is determined by fixing Z and Y . Also, note that for any (Z, Y), the corresponding
sequence of queries satisfies the conditions in Lemma 2, since A is msb-input-respecting
(first(1,Wi) = first(1, xj)). Let vone = {(Z, Y) ∈ ({0, 1}n)r × ({0, 1}nw)q | fA(Z, Y) = 1},
and vdist = {(Z, Y) ∈ ({0, 1}n)r × {0, 1}nw)q | Z is distinct and Y is non-zero-distinct}.
Observe that |vdist| = 2n(2n − 1) · · · (2n − (r − 1))((2n − 1)(2n − 2) · · · (2n − w))q ≥
2n(r+qw)(1− r(r − 1)/2n+1 − qw(w + 1)/2n+1), and therefore, we have

|vone ∩ vdist| ≥ |vone| − 2n(r+wq)(r(r − 1)/2n+1 + qw(w + 1)/2n+1). (10)

Let PR
def= Pr(R0

R← Func(n, n), R1
R← Func(n, nw) : AR0(·),R1(·) = 1). Then

PR =
∑

(Z,Y)∈vone

pR =
|vone|

(2n)r+qw
. (11)

On the other hand, let PF+
def= Pr(P R← Perm(n) : AP (·),F+

P (·) = 1). Then we have
PF+ =

∑
(Z,Y)∈vone

pF+ ≥∑
(Z,Y)∈(vone∩vdist)

pF+ and therefore,

PF+ ≥
(

1− r2q2(w + 1)3

22n−1
− q3(w + 1)4

22n+1

) ∑
(Z,Y)∈(vone∩vdist)

1
(2n)r+qw

from Lemma 2 and the fact that pR = 1/(2n)r+qw. By using (10) and (11),

PF+ ≥ PR − r2q2(w + 1)3

22n−1
− q3(w + 1)4

22n+1
− r(r − 1)

2n+1
− qw(w + 1)

2n+1
.

Finally, we have upper bound on PF+ by applying the same argument to 1 − PF+ and
1− PR. This concludes the proof of Theorem 5. �

We now present the proof of Theorem 3.

Proof (of Theorem 3). Suppose for a contradiction that Advpriv
CHM(A) is larger than the

right hand side of (6). Let the oracles (O0,O1) be either (P (·), F+
P (·)) or (R0(·), R1(·)) ∈

Func(n, n)×Func(n, nw). Consider the PRF-adversary B for (Perm(n), F+) in Figure 7,
where B uses A as a subroutine.

First, it is easy to see that B is msb-input-respecting. Next, we see that if (O0,O1) is
(P (·), F+

P (·)), then B gives A a perfect simulation of CHM.EncP , and therefore we have
Pr(P R← Perm(n) : BP (·),F+

P (·) = 1) = Pr(P R← Perm(n) : ACHM.EncP (·,·,·) = 1). On the
other hand, if (O0,O1) is (R0(·), R1(·)), then B gives A a perfect simulation of R, and we
have Pr(R0

R← Func(n, n), R1
R← Func(n, nw) : BR0(·),R1(·) = 1) = Pr(AR(·,·,·) = 1). From

the above discussion, we have Advprf
Perm(n),F+(B) = Advpriv

CHM(A).

19

PRF-adversary B
Setup:
100 S0 ← O0(const0)
101 S1 ← O0(const1)
If A makes a query (Ni,Hi,Mi):
200 l← �|Mi|/n�
201 ctr← (0‖Ni‖0n−�nonce−1)
202 S ← CHM.KSGen.Sim(ctr, l + 1)
203 S2 ← first(n, S)
204 S3 ← last(nl, S)
205 Ci ←Mi ⊕ first(|Mi|, S3)
206 Hash0 ← CHM.HashS0(Ci)
207 Hash1 ← CHM.HashS1(Hi)
208 Ti ← Hash0 ⊕Hash1 ⊕ S2

209 Ti ← first(τ, Ti)
210 return (Ci, Ti)

PRF-adversary B (Cont.)
If A returns b:
300 output b

Algorithm CHM.KSGen.Sim(ctr, l)
400 for j ← 0 to �l/w� − 1 do
401 Yj ← O1(ctr)
402 ctr← incw+1(ctr)
403 Y ← (Y0, . . . , Y�l/w�−1)
404 Y ← first(nl, Y)
405 return Y

Figure 7: The PRF-adversary B for (Perm(n), F+) based on the PRIV-adversary A for
CHM.

Observe that B makes r = 2 queries to its first oracle, and for the second oracle,
assume the queries made by A are (N0,H0,M0), . . . , (Nq−1,Hq−1,Mq−1). If we let li =
�|Mi|/n�, then B makes �(l0 + 1)/w� + · · · + �(lq−1 + 1)/w� queries, which is at most
(l0 + · · · + lq−1)/w + q/w + q ≤ (q + σ)/w + q = σ̃/w queries. Note that this holds
regardless the value of l0, . . . , lq−1.

From the assumption for a contradiction, Advpriv
CHM(A) is larger than the right hand

side of (6), which implies Advprf
Perm(n),F+(B) > (w+1)3σ̃2/w222n−3+(w+1)4σ̃3/w322n+1+

1/2n + (w + 1)σ̃/2n+1. This contradicts Theorem 5. �

Before proving Theorem 4, we recall the following well known fact on the property of
CHM.Hash [24].

Proposition 1 Let x, x′ ∈ {0, 1}∗ be two distinct bit strings, and let l = �|x|/n� and l′ =
�|x′|/n� be their block length. Then for any τ ≤ n and any τ -bit string constτ ∈ {0, 1}τ ,
we have Pr(S R← {0, 1}n : first(τ,CHM.HashS(x) ⊕ CHM.HashS(x′)) = constτ) ≤
max{l, l′}/2τ .

We now present the proof of Theorem 4.

Proof (of Theorem 4). First, consider the simulation CHM.Sim1 in Figure 8 of CHM,
where S0 and S1 are generated by the random function R0 ∈ Func(n, n), and the keystream
generation, CHM.KSGen uses the random function R1 ∈ Func(n, nw).

Let Advauth
CHM.Sim1(A) be the success probability of A’s forgery, where the oracle is

CHM.Sim1, i.e.,

Advauth
CHM.Sim1(A) def= Pr(R0

R← Func(n, n), R1
R← Func(n, nw) : ACHM.Sim1 forges).

20

Algorithm CHM.Sim1
Setup:
100 S0 ← R0(const0)
101 S1 ← R0(const1)
If A makes a query (Ni,Hi,Mi):
200 l← �|Mi|/n�
201 ctr← (0‖Ni‖0n−�nonce−1)
202 S ← CHM.KSGen.Sim1(ctr, l + 1)
203 S2 ← first(n, S)
204 S3 ← last(nl, S)
205 Ci ←Mi ⊕ first(|Mi|, S3)
206 Hash0 ← CHM.HashS0(Ci)
207 Hash1 ← CHM.HashS1(Hi)
208 Ti ← Hash0 ⊕Hash1 ⊕ S2

209 Ti ← first(τ, Ti)
210 return (Ci, Ti)

Algorithm CHM.Sim1 (Cont.)
If A returns (N∗,H∗, C∗, T ∗):
300 l← �|C∗|/n�
301 ctr← (0‖N∗‖0n−�nonce−1)
302 S ← CHM.KSGen.Sim1(ctr, l + 1)
303 S2 ← first(n, S)
304 Hash0 ← CHM.HashS0(C

∗)
305 Hash1 ← CHM.HashS1(H

∗)
306 T ′ ← Hash0 ⊕Hash1 ⊕ S2

307 T ′ ← first(τ, T ′)
308 if T ′ = T ∗ then return reject
309 S3 ← last(nl, S)
310 M∗ ← C∗ ⊕ first(|C∗|, S3)
311 return M∗

Algorithm CHM.KSGen.Sim1(ctr, l)
400 for j ← 0 to �l/w� − 1 do
401 Yj ← R1(ctr)
402 ctr← incw+1(ctr)
403 Y ← (Y0, . . . , Y�l/w�−1)
404 Y ← first(nl, Y)
405 return Y

Figure 8: The simulation CHM.Sim1 of CHM. R0 ∈ Func(n, n) and R1 ∈ Func(n, nw)
are random functions. CHM.Hash is defined in Figure 6.

We claim that ∣∣∣Advauth
CHM(A)−Advauth

CHM.Sim1(A)
∣∣∣ (12)

≤ (w + 1)3σ̃2

w222n−3
+

(w + 1)4σ̃3

w322n+1
+

1
2n

+
(w + 1)σ̃

2n+1
. (13)

To see this, suppose for a contradiction that (12) is larger than (13). Then, by using
A as a subroutine, it is possible to construct an msb-input-respecting PRF-adversary B
for (Perm(n), F+) making at most 2 oracle queries to its first oracle and at most σ̃/w
oracle queries to its second oracle, where B simply simulates R0 and R1 in Figure 8 by
using its own oracles, and returns 1 if and only if A succeeds in forgery. This implies
Pr(P R← Perm(n) : BP (·),F+

P (·) = 1) = Advauth
CHM(A) and Pr(R0

R← Func(n, n), R1
R←

Func(n, nw) : BR0(·),R1(·) = 1) = Advauth
CHM.Sim1(A) and thus, Advprf

Perm(n),F+(B) is larger
than (13), which contradicts Theorem 5.

Now we modify CENC.Sim1 to CENC.Sim2 in Figure 9.

1. Instead of using a random function R0, we choose two n-bit random strings (lines
100 and 101). This makes no difference in the advantage of A.

2. Similarly, instead of using a random function R1, we choose an nw-bit random string
each time R1 is called. This implies Y in line 405 of Figure 8 is an nl-bit random

21

Algorithm CHM.Sim2
Setup:
100 S0

R← {0, 1}n
101 S1

R← {0, 1}n
If A makes a query (Ni,Hi,Mi):
200 l← �|Mi|/n�
201 S

R← {0, 1}n(l+1)

202 S2 ← first(n, S)
203 S3 ← last(nl, S)
204 Ci ←Mi ⊕ first(|Mi|, S3)
205 Hash0 ← CHM.HashS0(Ci)
206 Hash1 ← CHM.HashS1(Hi)
207 Ti ← Hash0 ⊕Hash1 ⊕ S2

208 Ti ← first(τ, Ti)
209 return (Ci, Ti)

Algorithm CHM.Sim2 (Cont.)
If A returns (N∗,H∗, C∗, T ∗):
300 if N∗ ∈ {N0, . . . , Nq−1} then
301 S2

R← {0, 1}n
302 Hash0 ← CHM.HashS0(C

∗)
303 Hash1 ← CHM.HashS1(H

∗)
304 T ′ ← Hash0 ⊕Hash1 ⊕ S2

305 T ′ ← first(τ, T ′)
306 if N∗ = Ni then
307 Hash0 ← CHM.HashS0(Ci)
308 Hash1 ← CHM.HashS1(Hi)
309 S′

2 ← first(τ,Hash0 ⊕Hash1)⊕ Ti

310 Hash∗
0 ← CHM.HashS0(C

∗)
311 Hash∗

1 ← CHM.HashS1(H
∗)

312 T ′ ← first(τ,Hash∗
0 ⊕Hash∗

1)⊕ S′
2

313 if T ′ = T ∗ then return reject

314 M∗ ← 0|C∗|

315 return M∗

Figure 9: The simulation CHM.Sim2 of CHM.

string, and therefore, we have S
R← {0, 1}n(l+1) in line 201 of Figure 9. Also, we

removed “ctr← (0‖Ni‖0n−�nonce−1)” in line 201 of Figure 8 because we do not need
it.

3. We need a different treatment for a forgery attempt, since we allow the same nonce,
i.e., N∗ ∈ {N0, . . . , Nq−1}. We make two cases, case N∗ ∈ {N0, . . . , Nq−1} and case
N∗ = Ni. In the former case, we simply choose a new random S (thus S2) in line
301 of Figure 9. In the latter case, S2 for (Ni,Hi,Mi) has to be the same S2 for
(N∗,H∗, C∗, T ∗). Observe that S′

2 in line 309 of Figure 9 is the “S2 for (Ni,Hi,Mi).”
Thus, the simulation is precise, and this makes no difference in the advantage of A.

4. If T ′ = T ∗, we return M∗ = C∗ ⊕ first(|C∗|, S3). Since the value of M∗ has no
effect on the advantage (as long as it is not the special symbol reject), we return
M∗ ← 0|C∗|. Again, this makes no difference in the advantage of A.

Let Advauth
CHM.Sim2(A) def= Pr(ACHM.Sim2 forges), where the probability is taken over the

random coins in lines 100, 101, 201, 301 and A’s internal coins. From the above discussion,
we have

Advauth
CHM.Sim1(A) = Advauth

CHM.Sim2(A). (14)

Now we further modify CENC.Sim2 to CENC.Sim3 in Figure 10.

1. We postpone to choose S0 and S1 until we need them (we need them after the
forgery attempt).

2. Since Ci is the xor of Mi and a random string of length |Mi|, we simply let Ci
R←

{0, 1}|Mi|. The distribution of Ci is unchanged, and thus, this makes no difference
in the advantage of A.

22

Algorithm CHM.Sim3
If A makes a query (Ni,Hi,Mi):
100 Ci

R← {0, 1}|Mi|

101 Ti
R← {0, 1}τ

102 return (Ci, Ti)

Algorithm CHM.Sim3 (Cont.)
If A returns (N∗,H∗, C∗, T ∗):
200 if N∗ ∈ {N0, . . . , Nq−1} then
201 T ′ R← {0, 1}τ
202 if N∗ = Ni then
203 S0

R← {0, 1}n
204 S1

R← {0, 1}n
205 Hash0 ← CHM.HashS0(Ci)
206 Hash1 ← CHM.HashS1(Hi)
207 S′

2 ← first(τ,Hash0 ⊕Hash1)⊕ Ti

208 Hash∗
0 ← CHM.HashS0(C

∗)
209 Hash∗

1 ← CHM.HashS1(H
∗)

210 T ′ ← first(τ,Hash∗
0 ⊕Hash∗

1)⊕ S′
2

211 if T ′ = T ∗ then return reject

212 M∗ ← 0|C∗|

213 return M∗

Figure 10: The simulation CHM.Sim3 of CHM.

3. Similarly, since Ti includes S2, which is a random string of length τ , we simply let
Ti

R← {0, 1}τ . The distribution of Ti is unchanged, and thus, this makes no difference
in the advantage of A (Observe that we do not need S0 and S1, and we can postpone
the selection without changing the distribution of Ci and Ti).

4. If N∗ ∈ {N0, . . . , Nq−1}, T ′ includes S2, which is a random string of length τ , and
we simply let T ′ R← {0, 1}τ . The distribution of T ′ is unchanged.

5. If N∗ = Ni, we need S0 and S1. We choose them, and the rest is unchanged.

Since the distribution of (Ci, Ti) is unchanged, and there is no difference in the advan-
tage of A, we have

Advauth
CHM.Sim2(A) = Advauth

CHM.Sim3(A), (15)

where Advauth
CHM.Sim3(A) def= Pr(ACHM.Sim3 forges) and the probability is taken over the

random coins in lines 100, 101, 201, 203, 204 and A’s internal coins.
Consider arbitrarily fixed A’s internal coins and coins in lines 100 and 101. Then,

the query-answer pairs (N0,H0,M0, C0, T0), . . . , (Nq−1,Hq−1,Mq−1, Cq−1, Tq−1) and the
forgery attempt (N∗,H∗, C∗, T ∗) are all fixed, and we consider Pr(ACHM.Sim3 forges)
with the coins in lines 201, 203 and 204 only. We evaluate Advauth

CHM.Sim3(A) in the
following three cases (It is important to note that we are choosing S0 and S1 after fixing
Ni,Hi, Ci, Ti, N

∗,H∗, C∗, T ∗).

• Case N∗ ∈ {N0, . . . , Nq−1}: In this case, Advauth
CHM.Sim3(A) = 1/2τ since for fixed

T ∗, Pr(T ′ R← {0, 1}τ : T ′ = T ∗) = 1/2τ .

• Case N∗ = Ni and C∗ = Ci: In this case, fix any S1. Then Advauth
CHM.Sim3(A) is

at most Pr(S0
R← {0, 1}n : first(τ,CHM.HashS0(C

∗)⊕CHM.HashS0(Ci)) = constτ),
where constτ = first(τ,CHM.HashS1(H

∗) ⊕ CHM.HashS1(Hi)) ⊕ T ∗ ⊕ Ti. This is
at most max{|C∗|, |Ci|}/2τ from Proposition 1.

23

• Case N∗ = Ni and H∗ = Hi: This case is similar to the above. We first fix any
S0. Then Advauth

CHM.Sim3(A) is at most Pr(S1
R← {0, 1}n : first(τ,CHM.HashS1(H

∗)⊕
CHM.HashS1(Hi)) = constτ). In this case, constτ = first(τ,CHM.HashS0(C

∗) ⊕
CHM.HashS0(Ci)) ⊕ T ∗ ⊕ Ti. This probability is at most max{|H∗|, |Hi|}/2τ from
Proposition 1.

Therefore, we have

Advauth
CHM.Sim3(A) ≤ max{1,Hmax,Mmax}

2τ
. (16)

Finally, from (12), (13), (14), (15), and (16), we have (7). �

10 Discussions

Counter-based versions. CENC and CHM use a nonce, and it is natural to consider
their counter-based versions. Call them CENC-C and CHM-C, respectively. They use an
n-bit counter maintained across the plaintexts (usually by the sender). The drawback is
the difficulty of implementation and it is relatively harder to use them properly, which
is the reason why we have concentrated on the nonce-based schemes. The advantage
of CENC-C and CHM-C is that, the nonce length and the maximum plaintext length
restrictions are removed, while the security is unchanged (further, non-adaptive version
of PRP is enough for the security proofs). The restrictions only come from the security
bound (instead of the schemes). Thus, if carefully implemented and properly used, these
counter versions are suitable especially for 64-bit blockciphers

Tightness of the security bounds. For CTR mode, the security bound is tight up
to a constant factor. However, for CENC and CHM (and the PRF F in Section 3), we
do not know the tightness of our security bounds. The tightness is an open question.
For example, if we take CENC, the bound is O(wσ̂3/22n + wσ̂/2n). The question is the
existence of an adversary A that breaks the privacy of CENC with about σ̂ = 282 data
(without breaking the pseudorandomness of the AES), or the proof that the security
is better than the above. We conjecture that the bound of CENC can be improved to
O(wσ̂/2n), possibly by using the technique from [2]1.

Acknowledgement

The author would like to thank Kazumaro Aoki, Fumihiko Sano, and Akashi Satoh for
useful comments. Part of this paper was written while the author was at Ibaraki Univer-
sity, Japan.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. Proceedings of The 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, pp. 394–405, IEEE, 1997.

1However, it is not possible to check the details of the proof of [2], since only a sketch is given.

24

[2] M. Bellare, and R. Impagliazzo. A tool for obtaining tighter security analyses
of pseudorandom function based constructions, with application to PRP → PRF
convention. Cryptology ePrint Archive, Report 1999/024, Available at http:
//eprint.iacr.org/, 1999.

[3] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. JCSS, vol. 61, no. 3, pp. 362–399, 2000. Earlier version
in Advances in Cryptology—CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag,
1994.

[4] M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff backwards: Increasing security
by making block ciphers non-invertible. Advances in Cryptology—EUROCRYPT ’98,
LNCS 1403, pp. 266–280, Springer-Verlag, 1998.

[5] M. Bellare, and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. Advances in Cryptology—
ASIACRYPT 2000, LNCS 1976, pp. 531–545, Springer-Verlag, 2000.

[6] M. Bellare, and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. Advances in Cryptology—
ASIACRYPT 2000, LNCS 1976, pp. 317–330, Springer-Verlag, 2000.

[7] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. Fast Software
Encryption, FSE 2004, LNCS 3017, pp. 389–407, Springer-Verlag, 2004.

[8] K. Claffy, G. Miller, and K. Thompson. The nature of the beast: Recent traffic
measurements from an Internet backbone. Proceedings of INET ’98. Available at
http://www.caida.org/outreach/papers/1998/Inet98.

[9] D. Delov, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J. Comput.,
vol. 30, no. 2, pp. 391–437, 2000.

[10] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs. Advances
in Cryptology—CRYPTO ’98, LNCS 1462, pp. 370–389, Springer-Verlag, 1998.

[11] T. Iwata. New blockcipher modes of operation with beyond the birthday bound
security. Fast Software Encryption, FSE 2006, LNCS 4047, Springer-Verlag, 2006.

[12] J. Jonsson. On the Security of CTR + CBC-MAC. Selected Areas in Cryptography,
9th Annual Workshop (SAC 2002), LNCS 2595, pp. 76–93. Springer-Verlag, 2002.

[13] C.S. Jutla. Encryption modes with almost free message integrity. Advances in
Cryptology—EUROCRYPT 2001, LNCS 2045, pp. 529–544, Springer-Verlag, 2001.

[14] J. Katz, and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of
operation. Fast Software Encryption, FSE 2000, LNCS 1978, pp. 284–299, Springer-
Verlag, 2000.

[15] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional au-
thenticated encryption mode. Fast Software Encryption, FSE 2004, LNCS 3017,
pp. 408–426, Springer-Verlag, 2004.

25

[16] S. Lucks. The sum of PRPs is a secure PRF. Advances in Cryptology—EUROCRYPT
2000, LNCS 1807, pp. 470–484, Springer-Verlag, 2000.

[17] S. Lucks. The two-pass authenticated encryption faster than generic composition.
Fast Software Encryption, FSE 2005, LNCS 3557, pp. 284–298, Springer-Verlag,
2005.

[18] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, 1988.

[19] D. McGrew, and J. Viega. The Galois/Counter mode of operation (GCM). Submis-
sion to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/, 2004.

[20] D. McGrew, and J. Viega. The security and performance of Galois/Counter mode of
operation. Progress in Cryptology—INDOCRYPT 2004, LNCS 3348, pp. 343–355,
Springer-Verlag, 2004.

[21] P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption, FSE
2004, LNCS 3017, pp. 348–358, Springer-Verlag, 2004.

[22] P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the ACM
Conference on Computer and Communications Security, ACM CCS 2002, pp. 98–
107, ACM, 2002.

[23] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryption. ACM Trans. on Information System
Security (TISSEC), vol. 6, no. 3, pp. 365–403, 2003. Earlier version in Proceedings of
the eighth ACM Conference on Computer and Communications Security, ACM CCS
2001, pp. 196–205, ACM, 2001.

[24] M.N. Wegman, and J.L. Carter. New hash functions and their use in authentication
and set equality. JCSS, vol. 22, pp. 256–279, 1981.

[25] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Submis-
sion to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/, 2002.

26

