Cryptanalysis of PMACx, PMAC2x, and SIVx

Kazuhiko Minematsu¹ Tetsu Iwata^{2,*}

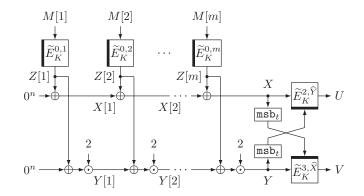
¹NEC Corporation, Japan

²Nagoya University, Japan

FSE 2017, Rump Session March 7, 2017, Tokyo International Forum, Tokyo, Japan

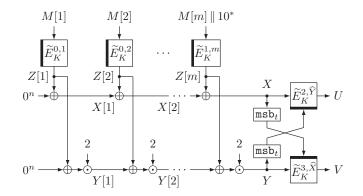
^{*}Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), 26280045. Work was carried out while visiting Nanyang Technological University, Singapore.

Scheme	Type	Provable security bound	Attack complexity
	\mathbf{PRF}	$\begin{array}{c} O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \\ O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \\ O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \end{array}$	$q = O(2^{n/2})$ $q = O(2^{n/2})$ $q = O(2^{n/2})$

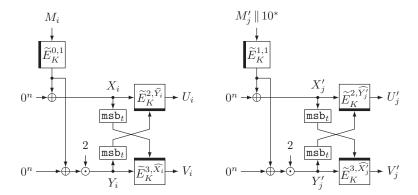

• TBC
$$\widetilde{E}_K : \mathcal{T} \times \{0,1\}^n \to \{0,1\}^n$$

- \blacktriangleright q queries
- ▶ provably secure up to 2^n queries [LN17], beyond the birthday bound security

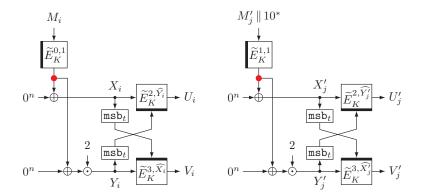
[[]LN17] Eik List and Mridul Nandi. Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday Authenticated Encryption. CT-RSA 2017


PMAC2x [LN17]

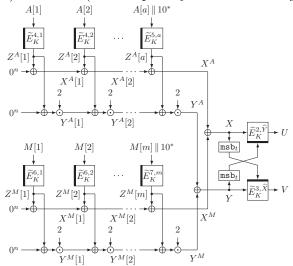
• $(M[1], \dots, M[m]) \stackrel{n}{\leftarrow} M, |M[m]| = n$


PMAC2x [LN17]

 $\blacktriangleright (M[1], \dots, M[m]) \stackrel{n}{\leftarrow} M, |M[m]| < n$


$O(2^{n/2})$ Attack on PMAC2x

▶ $Q = 2^{n/2-1}$ ▶ $M_1, ..., M_Q, |M_i| = n \text{ for } 1 \le i \le Q \text{ and } \{M_1, ..., M_Q\} \text{ is distinct}$ ▶ $M'_1, ..., M'_Q, |M'_j| < n \text{ for } 1 \le j \le Q \text{ and } \{M'_1, ..., M'_Q\} \text{ is distinct}$


$O(2^{n/2})$ Attack on PMAC2x

▶ W.H.P., X_i = X'_j for some i and j, in which case Y_i = Y'_j
▶ (U_i, V_i) = (U'_j, V'_j) for PMAC2x, but this is unlikely for a random function that outputs 2n bits

 $O(2^{n/2})$ Attack on PMACx and SIVx

► The attack can be adapted to break PMACx (*n*-bit output version of PMAC2x) and SIVx (both in privacy and authenticity)

$O(2^{n/2})$ Attack on PMACx and SIVx

- ▶ These attacks make use of the way the input is padded
 - A bug in the padding method
 - could be avoided by appropriately changing the padding method
- ▶ a variant of the attack against SIVx that does not rely on the padding (both in privacy and authenticity)
 - Changing the padding does not prevent this attack

Scheme	Type	Provable security bound	Attack complexity
	\mathbf{PRF}	$\begin{array}{c} O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \\ O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \\ O(q^2/2^{2n} + q^3/2^{3n}) \ [\text{LN17}] \end{array}$	$q = O(2^{n/2}) q = O(2^{n/2}) q = O(2^{n/2})$

http://eprint.iacr.org/2017/220