Quantum Differential and Linear Cryptanalysis

Marc Kaplan1,2 Gaëtan Leurent3
Anthony Leverrier3 María Naya-Plasencia3

1LTCI, Télécom ParisTech

2School of Informatics, University of Edinburgh

3\text{Inria Paris}

FSE 2017
Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)
Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)
Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don’t expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor’s algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k/2}$ with Grover’s algorithm
 - Common recommendation: double the key length (AES-256)
- Encryption modes are secure
- Authentication modes broken w/ superposition queries [Crypto ’16]

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis
Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don’t expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor’s algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k/2}$ with Grover’s algorithm
 - Common recommendation: double the key length (AES-256)

- Encryption modes are secure
 - [Unruh & al, PQC’16]

- Authentication modes broken w/ superposition queries [Crypto ’16]
Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don’t expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor’s algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k/2}$ with Grover’s algorithm
 - Common recommendation: double the key length (AES-256)
- Encryption modes are secure \[\text{[Unruh & al, PQC’16]} \]
- Authentication modes broken w/ superposition queries \[\text{[Crypto ’16]} \]
Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don’t expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor’s algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k/2}$ with Grover’s algorithm
 - Common recommendation: double the key length (AES-256)
- Encryption modes are secure [Unruh & al, PQC’16]
- Authentication modes broken w/ superposition queries [Crypto ’16]
Overview of the talk

Main question

Is AES secure in a quantum setting?

- Symmetric design are evaluated with cryptanalysis:
 - Differential (truncated, impossible, ...)
 - Linear
 - Integral
 - Algebraic
 - ...

- We should study quantum cryptanalysis!

- Start with classical techniques
 - Do we get a quadratic speedup?
 - Do we need a quantum encryption oracle?
 - How are different cryptanalysis techniques affected?
Security notions: Classical

- **PRF security**: given access to P/P^{-1}, distinguishing E from random
- **Classical setting**: classical computations
- **Classical security**: classical queries
- Cipher broken by adversary with
 - data $\ll 2^n$
 - time $\ll 2^k$
 - success $> 3/4$
Security notions: Quantum Q1

- **PRF security**: given access to P/P^{-1}, distinguishing E from random
- **Quantum setting**: quantum computations
- **Classical security**: classical queries
- **Cipher broken by adversary with**
 - data $\ll 2^n$
 - time $\ll 2^{k/2}$
 - success $> 3/4$
Security notions: Quantum Q2

- **PRF security**: given access to P/P^{-1}, distinguishing E from random

- **Quantum setting**: quantum computations

- **Quantum security**: quantum (superposition) queries

- Cipher broken by adversary with
 - data $\ll 2^n$
 - time $\ll 2^{k/2}$
 - success $> 3/4$

\[
\sum_x \psi_x |x\rangle |0\rangle \quad \text{cipher / random} \quad \sum_x \psi_x |x\rangle |P(x)\rangle
\]
About the models

Q1 model: classical queries

- Build a quantum circuit from classical values
- Example: breaking RSA with Shor’s algorithm

Q2 model: superposition queries

- Access quantum circuit implementing the primitive with a secret key
- Example: breaking CBC-MAC with Simon’s algorithm

- The Q2 model is *very strong* for the adversary
 - Simple and clean generalisation of classical oracle
 - Aim for security in the strongest (non-trivial) model
 - A Q2-secure block cipher is useful for security proofs of modes
Outline

Introduction
 Quantum Computing

Brute-force
 Grover’s algorithm

Differential
 Distinguisher
 Last-round attack

Truncated differential
 Distinguisher
 Last-round attack

Conclusion
Grover’s algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot |X|$

<table>
<thead>
<tr>
<th>Classical algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: loop</td>
</tr>
</tbody>
</table>
| 2: $x \leftarrow \text{Setup}()$ | ▶ Pick a random element in X, cost S
| 3: if $\text{Check}(x)$ then | ▶ Check if it is marked, cost C
| 4: return x |

- $1/\varepsilon$ repetitions expected
- Complexity $(S + C)/\varepsilon$
Grover’s algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot |X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- **Setup**: builds a uniform superposition of inputs in X
- **Check**: applies a control-phase gate to the marked elements

- Only $1/\sqrt{\varepsilon}$ repetitions needed
- Complexity $(S + C)/\sqrt{\varepsilon}$

- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)
Grover’s algorithm

- **Search for a marked element** in a set X
- **Set of marked elements** M, with $|M| \geq \varepsilon \cdot |X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- **Setup**: builds a uniform superposition of inputs in X
- **Check**: applies a control-phase gate to the marked elements

- Only $1/\sqrt{\varepsilon}$ repetitions needed
- Complexity $(S + C)/\sqrt{\varepsilon}$

- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)
Brute-force attack

- We can use Grover’s algorithm for a quantum brute-force key search

1. Capture a few known plaintext/ciphertext: $C_i = E_{\kappa^*}(P_i)$
2. **Setup**: builds a uniform superposition of $\{0, 1\}^k$
3. **Check**(κ): test whether $C_i = E_{\kappa}(P_i)$

- Complexity $O(2^{k/2})$
 - Quadratic gain
- Uses the **Q1** model
 - Classical data (C_i, P_i)
 - Quantum circuit independent of the secret key κ^*

$S = 1, \varepsilon = 2^{-k}, C = 1$
Outline

Introduction
- Quantum Computing

Brute-force
- Grover’s algorithm

Differential
- Distinguisher
- Last-round attack

Truncated differential
- Distinguisher
- Last-round attack

Conclusion
Differential distinguisher: classical

- Assume a differential $\delta_{\text{in}}, \delta_{\text{out}}$ given, with

$$h := -\log Pr_x[E(x \oplus \delta_{\text{in}}) = E(x) \oplus \delta_{\text{out}}] \ll n,$$

Classical algorithm: search for right pairs

1. **for** $0 \leq i < 2^h$ **do**
2. $x \leftarrow \text{Rand}()$
3. **if** $E(x \oplus \delta_{\text{in}}) = E(x) \oplus \delta_{\text{out}}$ **then**
4. **return** cipher
5. **return** random

- Complexity $O(2^h)$
Differential distinguisher: quantum

- Assume a differential $\delta_{\text{in}}, \delta_{\text{out}}$ given, with

$$h := -\log\Pr_x[E(x \oplus \delta_{\text{in}}) = E(x) \oplus \delta_{\text{out}}] \ll n,$$

Quantum algorithm: Grover search for right pair

1. **Setup**: builds a uniform superposition of $\{0, 1\}^n$, $S = 1$

2. **Check(x)**: test whether $E(x \oplus \delta_{\text{in}}) = E(x) \oplus \delta_{\text{out}}$, $\varepsilon = 2^{-h}, C = 1$

- Complexity $O(2^{h/2})$
 - Quadratic gain
- Uses the Q2 model
 - Superposition queries to E with secret key
Last-Round attack: classical

Classical algorithm

1: for $0 \leq i < 2^h$ do
2: \(x \leftarrow \text{RAND()}) \)
3: \(\triangleright \) Filter possible output differences
4: if \(E(x) \oplus E(x \oplus \delta_{\text{in}}) \in \mathcal{D}_{\text{fin}} \) then
5: Find last key candidates for \((x, x \oplus \delta_{\text{in}})\)
6: Try all possibilities for remaining key bits

\[p = 2^{-h} \]

\[p = 2^{-h_{\text{out}}} \]

\[\mathcal{D}_{\text{fin}} \]

\(\triangleright \) Finding partial key candidates costs \(C_{k_{\text{out}}} \)

\(\triangleright \) Between 1 and \(2^{k_{\text{out}}} \)

\[T = 2^h + 2^{h-n+\Delta_{\text{fin}}} \cdot \left(C_{k_{\text{out}}} + 2^{k-h_{\text{out}}} \right) \]
Last-Round attack: quantum Q2

Quantum algorithm: Grover search for right pair

1. **Setup**: builds a uniform superposition of
 \[X = \{ x : E(x) \oplus E(x \oplus \delta_{\text{in}}) \in D_{\text{fin}} \} \]
 using nested Grover algorithm
 \[S = 2^{(n-\Delta_{\text{fin}})/2} \]

2. **Check**\((x)\): Find last key cand. for \((x, x \oplus \delta_{\text{in}})\)
 Run nested Grover over remaining key bits
 \[\varepsilon = 2^{n-h-\Delta_{\text{fin}}}, C = C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2} \]

- Repeat key recovery with right pair
- Finding partial key candidates costs \(C^*_{k_{\text{out}}}\)
 - Between 1 and \(2^{k_{\text{out}}/2}\)
 - \[T = 2^{h/2} + 2^{(h-n+\Delta_{\text{fin}})/2} \cdot (C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2}) \]
Last-Round attack: quantum Q1

- Previous attack uses superposition queries
- Alternatively, make 2^h classical queries
 - Interesting if $2^h < 2^{k/2}$
 - E.g. AES-256

Quantum algorithm: Grover search for right pair

1. Setup: builds superposition of classical data using quantum memory
 \[S = 1 \]
2. Check(x): same as Q2
 \[\varepsilon = 2^{n-h-\Delta_{\text{fin}}}, \quad C = C^*_k + 2^{(k-h_{\text{out}})/2} \]

- \[T = 2^h + 2^{(h-n+\Delta_{\text{fin}})/2} \cdot \left(C^*_k + 2^{(k-h_{\text{out}})/2} \right) \]
Outline

Introduction
 Quantum Computing

Brute-force
 Grover’s algorithm

Differential
 Distinguisher
 Last-round attack

Truncated differential
 Distinguisher
 Last-round attack

Conclusion
Truncated differential distinguisher: classical

- Assume vector spaces $\mathcal{D}_{\text{in}}, \mathcal{D}_{\text{out}}$ given (dim. $\Delta_{\text{in}}, \Delta_{\text{out}}$), with

$$h := -\log \Pr_{x, \delta \in \mathcal{D}_{\text{in}}}[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text{out}}] \ll n - \Delta_{\text{out}},$$

Classical algorithm (using structures)

1. for $0 \leq i < 2^{h - 2\Delta_{\text{in}}}$ do
2. $x \leftarrow \text{Rand}()$
3. $L \leftarrow \{E(x \oplus \delta) : \delta \in \mathcal{D}_{\text{in}}\}$
4. if $\exists y_1, y_2 \in L$ s.t. $y_1 \oplus y_2 \in \mathcal{D}_{\text{out}}$ then
5. return cipher
6. return random

- Complexity $O(2^{h - \Delta_{\text{in}}})$
Truncated differential distinguisher: quantum

- Assume vector spaces $\mathcal{D}_{\text{in}}, \mathcal{D}_{\text{out}}$ given (dim. $\Delta_{\text{in}}, \Delta_{\text{out}}$), with

$$h := -\log \mathbb{P}_{x,\delta \in \mathcal{D}_{\text{in}}} [E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text{out}}] \ll n - \Delta_{\text{out}},$$

Quantum algorithm: Grover search for structure with right pair

1. **Setup**: builds a uniform superposition of $\{0,1\}^n$

2. **Check**(x): test whether $\exists y_1, y_2 \in x \oplus \mathcal{D}_{\text{in}}$ s.t. $y_1 \oplus y_2 \in \mathcal{D}_{\text{out}}$

$$\varepsilon = 2^{-h + 2\Delta_{\text{in}}}, \quad C = ?$$
Finding collisions

- Finding \(y_1, y_2 \in L \) s.t. \(y_1 \oplus y_2 \in D_{out} \): truncate and find collisions

Classical algorithm

1. Sort(\(L \))
2. for \(0 < i < |L| \) do
3. if \(L[i] = L[i + 1] \) then return \(L[i] \)
4. return \(\perp \)

- Complexity \(\tilde{O}(N) \)

Quantum algorithmic: Ambainis’ element distinctness

- Quantum walk algorithm to find collisions
- Complexity \(O(N^{2/3}) \) — less than quadratic speedup!
- Uses memory \(O(N^{2/3}) \)
Finding collisions

- Finding $y_1, y_2 \in L$ s.t. $y_1 \oplus y_2 \in D_{\text{out}}$: truncate and find collisions

Classical algorithm

1: Sort(L)
2: for $0 < i < |L|$ do
3: if $L[i] = L[i + 1]$ then return $L[i]$
4: return \bot

- Complexity $\tilde{O}(N)$

Quantum algorithmic: Ambainis’ element distinctness

- Quantum walk algorithm to find collisions
- Complexity $O(N^{2/3})$ — less than quadratic speedup!
- Uses memory $O(N^{2/3})$
Truncated differential distinguisher: quantum

- Assume vector spaces $D_{\text{in}}, D_{\text{out}}$ given ($\text{dim. } \Delta_{\text{in}}, \Delta_{\text{out}}$), with

$$h := -\log \Pr_{x, \delta \in D_{\text{in}}} [E(x \oplus \delta) \oplus E(x) \in D_{\text{out}}] \ll n - \Delta_{\text{out}},$$

Quantum algorithm: Grover search for structure with right pair

1. **Setup**: builds a uniform superposition of $\{0, 1\}^n$
2. **Check**(x): test whether $\exists y_1, y_2 \in x \oplus D_{\text{in}}$ s.t. $y_1 \oplus y_2 \in D_{\text{out}}$

$$\varepsilon = 2^{-h+2\Delta_{\text{in}}}, C = 2^{2\Delta_{\text{in}}/3}$$

- Complexity $O(2^{h/2-\Delta_{\text{in}}/3})$ — less than quadratic speedup
- Uses the Q2 model
 - Superposition queries to E with secret key
Last-Round attack: classical

Classical algorithm

1: for $0 \leq i < 2^{h-2\Delta_{in}}$ do
2: \hspace{1em} $x \leftarrow \text{RAND}()$
3: \hspace{1em} $L \leftarrow \{E(x \oplus \delta) : \delta \in D_{in}\}$
4: \hspace{1em} ▷ Filter possible output differences
5: \hspace{1em} if $\exists y_1, y_2 \in L$ s.t. $y_1 \oplus y_2 \in D_{out}$ then
6: \hspace{1em} \hspace{1em} Find last key candidates for (y_1, y_2)
7: \hspace{1em} \hspace{1em} Try all possibilities for remaining key bits

Finding partial key candidates costs $C_{k_{out}}$

▷ Between 1 and $2^{k_{out}}$

$T = 2^{h-\Delta_{in}} + 2^{h-n+\Delta_{fin}} \cdot (C_{k_{out}} + 2^{k-h_{out}})$
Last-Round attack: quantum $Q2$

Assume each structure has pairs with difference in D_{fin}

Q2 algo: Grover search for structure with right pair

1. **Setup**: unif. superposition
 \[S = 1, \varepsilon = 2^{2\Delta_{\text{in}} - h} \]
2. **Check(x)**: Grover search over pairs in $x \oplus D_{\text{in}}$
 1. **Setup**: Ambainis to find pairs with output in D_{fin}
 \[S' = 2^{(n - \Delta_{\text{fin}})/3} \]
 2. **Check(x_1, x_2)**: Find last key candidates
 Run nested Grover over remaining key bits,
 \[\varepsilon' = 2^{-2\Delta_{\text{in}} + (n - \Delta_{\text{fin}})}, C' = C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2} \]
 \[C = 2^{\Delta_{\text{in}} - (n - \Delta_{\text{fin}})/6} + 2^{\Delta_{\text{in}} + (\Delta_{\text{fin}} - n)/2} \left(C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2} \right) \]

\[T = 2^{h/2 - (n - \Delta_{\text{fin}})/6} + 2^{(h - n + \Delta_{\text{fin}})/2} \left(C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2} \right) \]
Last-Round attack: quantum Q1

- Alternatively, use classical queries
- Filter pairs with output in D_{fin} classically

Q1 algo: Grover search for structure with right pair

1. **Setup:** builds superposition of classical data using quantum memory $S = 1$
2. **Check**(x_1, x_2): Find last key candidates
Run nested Grover over remaining key bits

$$\varepsilon = 2^{n-h-\Delta_{\text{fin}}}, C = C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2}$$

$$T = 2^{h-\Delta_{\text{in}}} + 2^{(h-n+\Delta_{\text{fin}})/2} \cdot \left(C^*_{k_{\text{out}}} + 2^{(k-h_{\text{out}})/2}\right)$$
Summary: simplified complexities

- **Simple differential distinguisher**
 \[D_C = 2^h \quad D_{Q1} = 2^h = D_C \quad D_{Q2} = 2^{h/2} = \sqrt{D_C} \]
 \[T_C = 2^h \quad T_{Q1} = 2^h = T_C \quad T_{Q2} = 2^{h/2} = \sqrt{T_C} \]

- **Simple differential LR attack**
 \[D_C = 2^h \quad D_{Q1} = 2^h = D_C \quad D_{Q2} = 2^{h/2} = \sqrt{D_C} \]
 \[T_C = 2^h + C_k \quad T_{Q1} = 2^h + C^*_k \quad T_{Q2} = 2^{h/2} + C^*_k \approx \sqrt{T_C} \]

- **Truncated differential distinguisher**
 \[D_C = 2^{h-\Delta_{in}} \quad D_{Q1} = 2^{h-\Delta_{in}} = D_C \quad D_{Q2} = 2^{h/2-\Delta_{in}/3} > \sqrt{D_C} \]
 \[T_C = 2^{h-\Delta_{in}} \quad T_{Q1} = 2^{h-\Delta_{in}} = T_C \quad T_{Q2} = 2^{h/2-\Delta_{in}/3} > \sqrt{T_C} \]

- **Truncated differential LR attack Assuming > 1 filtered pairs / structure**
 \[D_C = 2^{h-\Delta_{in}} \quad D_{Q1} = 2^{h-\Delta_{in}} = D_C \quad D_{Q2} = 2^{h/2-(n-\Delta_{fin})/6} > \sqrt{D_C} \]
 \[T_C = 2^{h-\Delta_{in}} + C_k \quad T_{Q1} = 2^{h-\Delta_{in}} + C^*_k \quad T_{Q2} = 2^{h/2-(n-\Delta_{fin})/6} + C^*_k \approx \sqrt{T_C} \]
Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

LAC (reduced LBlock, $n = 64$)

- Differential with probability $2^{-61.5}$
 - Classical distinguisher with complexity $2^{62.5}$
 - Quantum distinguisher with complexity $2^{31.75}$
- Truncated differential with $\Delta_{\text{in}} = 12, \Delta_{\text{out}} = 20, 2^h = 2^{-44} + 2^{-55.3}$
 - Classical distinguisher with complexity $2^{60.9}$
 - Quantum distinguisher with complexity $2^{33.4}$
Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-64 ($n = 64$)

- Truncated differential with $h = 69.5$, $\Delta_{in} = 16$, $\Delta_{fin} = 32$, $k = 64$, $k_{out} = 32$, $h_{out} = 45$
 - Classical attack with complexity $2^{58.2}$
 - Quantum attack with complexity $> 2^{32}$
Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-96 (n = 64)

- Truncated differential with $h = 78$, $\Delta_{\text{in}} = 32$, $\Delta_{\text{fin}} = 32$, $k = 96$, $k_{\text{out}} = 48$, $h_{\text{out}} = 52$
 - Classical attack with complexity 2^{90}
 - Q2 attack with complexity $2^{47.3}$
 - Q1 attack with complexity $2^{47.96}$
Conclusions

- We fixed some mistakes from the ToSC version
 - Updated version on arXiv:1510.05836

- Quantification of classical attacks using Grover and Ambainis
 - Differential, truncated differential and linear cryptanalysis

- “It’s complicated”
- Up to quadratic speedup
 - If key search is the best classical attack,
 Grover key search is the best quantum attack

- Data complexity can only be reduced using quantum queries
- Cipher with $k > n$ are most likely to see quadratic speedup
 - Attacks with classical queries (Q1 model) possible
Bonus slide: Linear cryptanalysis

- **Linear distinguisher**

\[
D_C = \frac{1}{\varepsilon^2} \quad D_{Q1} = \frac{1}{\varepsilon^2} = D_C \quad D_{Q2} = \frac{1}{\varepsilon} = \sqrt{D_C} \\
T_C = \frac{1}{\varepsilon^2} \quad T_{Q1} = \frac{1}{\varepsilon^2} = T_C \quad T_{Q2} = \frac{1}{\varepsilon} = \sqrt{T_C}
\]

- **Linear attack with \(\ell\) \(r\)-round distinguishers (Matsui 1)**

\[
D_C = \frac{1}{\varepsilon^2} \quad D_{Q1} = \frac{\ell}{\varepsilon^2} > D_C \quad D_{Q2} = \frac{\ell}{\varepsilon} > \sqrt{D_C} \\
T_C = \frac{\ell}{\varepsilon^2} + 2^{k-\ell} \quad T_{Q1} = \frac{\ell}{\varepsilon^2} + 2^{(k-\ell)/2} \quad T_{Q2} = \frac{\ell}{\varepsilon} + 2^{(k-\ell)/2} > \sqrt{T_C}
\]

- **Last-round linear attack (Matsui 2)**

\[
D_C = \frac{1}{\varepsilon^2} \quad D_{Q1} = \frac{1}{\varepsilon^2} = D_C \quad D_{Q2} = 2^{k_{out}/2}/\varepsilon > \sqrt{D_C} \\
T_C = C_k \quad T_{Q1} = \frac{1}{\varepsilon^2} + \sqrt{C_k} \quad T_{Q2} = \sqrt{C_k} = \sqrt{T_C}
\]