Cryptanalysis of Haraka

Jérémy Jean
Agence Nationale de la Sécurité des Systèmes d’Information
Crypto Laboratory

FSE 2017 @ Tokyo, Japan
March 6, 2017
Jeremy.Jean@ssi.gouv.fr
Introduction

Let \(n \) be a positive integer (typically, \(n = 128, n = 160 \) or \(n = 256 \))

General Hash Function

- ‘‘Securely’’ hashes any string to a fixed-width \(n \)-bit string
- \(h : \{0,1\}^* \rightarrow \{0,1\}^n \)
- Required security levels:
 - (Second) preimage resistance: \(n \) bits
 - Collision resistance: \(n/2 \) bits
- Examples: SHA-2, SHA-3, etc.

Hash Function for Hash-Based Signature Schemes

- Why? Used in a few schemes for PQ crypto:
 - e.g., Lamport [Lam79], XMSS [BDH11], SPHINCS [BHH15]
- One **pair** of short-input hash functions:
 - \(h_n : \{0,1\}^n \rightarrow \{0,1\}^n \) and \(h_{2n} : \{0,1\}^{2n} \rightarrow \{0,1\}^n \)
- Only required security: \(n \)-bit (second) preimage resistance
- Example: Haraka (\(n = 256 \))
- **No collision resistance**: non-trivial to adapt usual design strategies to drop this security requirement
Specifications of Haraka: High-Level Overview

Haraka: Two Functions

Haraka-256/256: \(\{0, 1\}^{256} \rightarrow \{0, 1\}^{256} \)

and: Haraka-512/256: \(\{0, 1\}^{512} \rightarrow \{0, 1\}^{256} \)

Haraka-256/256

- Internal state: 256 bits
- Davies-Meyer mode
- Inner permutation: \(\pi_{256} \)
- Output size: 256 bits

Haraka-512/256

- Internal state: 512 bits
- Davies-Meyer mode
- Inner permutation: \(\pi_{512} \)
- Output size: 256 bits
- Final truncation

Claimed Security

- 256-bit preimage security [Broken]
- Stronger Haraka variant: 128-bit collision security [Broken]

m \[\rightarrow\] \[\pi\] \[\rightarrow\] \[\pi(m) \oplus m\]
Haraka–256/256

Inner Permutation π_{256}

- Internal state: 2 AES states
- Repeat 5 steps ($i = 0, \ldots, 4$):
 - Apply 1R AES on each state w/ key RC_{2i}
 - Apply 1R AES on each state w/ key RC_{2i+1}
 - Permute the AES columns (mix)
- Final Davies–Meyer feed-forward

Claimed Security

- **Preimage resistance:**
 - #steps: 5
 - Security level: 256 bits
- **Collision resistance:**
 - #steps: 6 (stronger)
 - Security level: 128 bits
Haraka-512/256

Inner Permutation π_{512}
- Same principle as π_{256}
- Final truncation to produce 256 bits

Claimed Security
- **Preimage resistance:**
 - #steps: 5
 - Security level: 256 bits
- **Collision resistance:**
 - #steps: 6 (stronger)
 - Security level: 128 bits

Final Truncation: Remove 8 out of 16 AES columns
Haraka Round Constants

Highly Structured Round Constants

The 128-bit round constant RC_i verifies:

$$RC_i = c_i \oplus c_i \oplus c_i \oplus c_i$$

where 32-bit c_i has one bit at Position i.

$$RC_0 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad RC_1 = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad RC_2 = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ldots$$

Spoiler Alert

The attacks proposed in this talk rely on this structure.
Symmetries in the Keyless AES Round Function A

Classes of Size 2^{64} and 2^{32} (used in the collision attack)

A symmetric state with two equal halves stays symmetric after A:

A state with four equal columns is called strongly symmetric.

Pairs of States with Swapped Halves (used in the preimage attack)

Let (S_1, S_2) be a pair of AES states with swapped halves, then $A(S_1)$ and $A(S_2)$ also have swapped halves.
Collision Attack on Haraka

General Idea

The strongly symmetric property propagates in all the Haraka components since the round constants are strongly symmetric.

Details for Haraka-256/256

- Input: 2 AES strongly symmetric states
- Then, in each step:
 - Keyless AES maintains the property
 - Constant addition as well
 - Column reordering becomes identity
- Davies-Meyer feedforward keeps symmetry
- Hence, all output columns are equal

Notes

- Enough to collide on a 32-bit column
- Collisions after about 2^{16} evaluations
- Same cost for Haraka-512/256
Preimage Attack on Haraka-512/256

Preimage Problem Detail and Idea

- Given \(y \) the 256-bit preimage challenge, find one 512-bit \(x \) such that Haraka-512/256(\(x \)) = \(y \)
- About \(2^{256} \) solutions ⇒ rely on symmetry to reduce this
- Problem too constrained for Haraka-256/256

Given \(y \) the 256-bit preimage challenge, find one 512-bit \(x \) such that Haraka-512/256(\(x \)) = \(y \)
A 3-Step Symmetry Class for π_{512}

Notes

- Each variable is a 32-bit AES column
- Symmetry class extended from the one with swapped halves on AES
- Rely on the structure of the mix column permutation
- Size: $2^{8\times32} = 2^{256}$ states following the 3-step symmetry
- Constrained problem: if we force the preimage to go through these 3 rounds, only one solution expected
Notes

- **If** the last 3 steps follow the symmetry ⇒ **about 1 preimage for** *y*
- The challenge fixes 128 bits of the 256-bit symmetry freedom
- Hence, if an algorithm can enumerate the 2^{128} possible input states in less than 2^{256} operations, it is a **preimage attack**.
Preimage Attack Strategy II

Towards an Enumeration Algorithm in 2^{192} Operations

- Focus on the steps not covered by the symmetry
- Step 2 partially inverted (formally)
- Reduction to an attack on 3-round AES with partial information on the input
Preimage Attack: Enumeration Algorithm

Algorithm (simplified)

- Due to symmetry in last 3 steps
 - at most 2^{128} values for all \mathcal{L}
 - at most 2^{128} values for all \mathcal{R}
- For all 2^{128} values of \mathcal{D}
 - Each of the 4 inputs states can only assume $2^{128-32-64} = 2^{32}$ values
 - (32- and 64-bit constraints)
- For each State $i = 0, \ldots, 3$, store the 2^{32} states in list L_i
- For all \mathcal{L} in $L_0 \times L_1$, store partial \mathcal{D} in L_{01}
- For all \mathcal{R} in $L_2 \times L_3$, store partial \mathcal{D} in L_{23}
- About 1 collision between L_{01} and L_{23} \Rightarrow one preimage candidate
- About 2^{128} candidates generated in about $2^{128+64} = 2^{192}$ operations
Preimage Attack on Haraka-512/256: Wrapping Up

Preimage Algorithm

- Rely on the 3-step 256-bit symmetry class
- The challenge y fixes 128 bits of the 256-bit of symmetry freedom
- Generate 2^{128} preimage candidates in 2^{192} operations
- Filter them to verify the remaining 128 bits of the preimage challenge

Conclusion

One preimage is found in about 2^{192} function evaluations, 2^{64} times faster than exhaustive search
Conclusion

Attacks

<table>
<thead>
<tr>
<th>Collision attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity: 2^{16} evaluations</td>
</tr>
<tr>
<td>Break 128-bit claimed security</td>
</tr>
<tr>
<td>Apply to any number of steps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preimage attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only works for Haraka-512/256</td>
</tr>
<tr>
<td>Complexity: 2^{192} function evaluations, 2^{64} memory</td>
</tr>
<tr>
<td>Break 256-bit claimed security</td>
</tr>
</tbody>
</table>

Final Remarks

- All attacks rely on a bad choice of round constant
- Designs very easy to patch
 - Haraka v2 (see talk on Tuesday)
Conclusion

Attacks

Collision attack
- Complexity: 2^{16} evaluations
- Break 128-bit claimed security
- Apply to any number of steps

Preimage attack
- Only works for Haraka-512/256
- Complexity: 2^{192} function evaluations, 2^{64} memory
- Break 256-bit claimed security

Final Remarks

- All attacks rely on a bad choice of round constant
- Designs very easy to patch
 - Haraka v2 (see talk on Tuesday)

Thank you for your attention!