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Counters in Cryptography

Classical View:
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where (i)s is the s-bits binary representation of | for some fixed s.
- Prevents collisions on the inputs to the underlying primitive.
- Standalone input: CTR mode, HAIFA, GCM, SIV.

- Encoded within message blocks: HATFA, XORMAC, Light MAC.



Counter-Based Input Encoding
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Counter-Based Input Encoding
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For n = 128 and s = 64, the rate is 0.5 for any message lengths.



STD": Length Dependent Counter Scheme

- Computes the optimal counter size (=~ log, ¢) for the given
message length /.
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+ For ¢ < L, rategrport > ratesrp.

Comparison
For n = 128 bits and ¢ = 2'° bits, the rate is 0.92.
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Comparison
For n = 128 bits and ¢ = 2'° bits, the rate is 0.92.

What if we don't know the length?
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A Candidate Length Independent Counter

0,1, 00, 01,10, 11, 000...

- Length Independent. v
* I’Clte > I’CItQSTDom.

- But, is this blockwise collision-free? X

Trivial Collision

For n =8 and M := OabcdefghijkRlmabcdef we have
Xy = 00abcdef, X, = 1ghijklm, and X3 = 00abcdef. Clearly, X; = Xs.
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VAR: Message Length Independent Counter

- Add a small fixed length (r) counter that gets updated with the
change in counter size.

000, 001, 0100, ..., 0111, 10000, ..., 10111, 110000, ...

- Length Independent. v
- Blockwise Collision-free and Injective. v

- ralog, log, L, for L < 2¢M, 2 < ¢(n) < n.

Comparison
For n = 128 bits, L = 2%* bits, and ¢ = 2'° bits, the rate is 0.89.



Counter Function Family (CFF)

Definition:
CTR is a family of counter functions {ctr, : £ < L} where

Ve<L, ctrp: N—{0,1}<".

- Length Independent: For STD counter function family
stde(1) = (i)s, V £, I.

- Length Dependent: For STD?* counter function family
opty(i) = (iog, e, ¥ £, .

- Foragiven ¢, if Vi #j, |ctry(i)] = |ctre(j)|, we say that CTR is a
fixed length CFF; variable length CFF otherwise.
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Definition:
CTR is a family of counter functions {ctr, : £ < L} where

Ve<L, ctrp: N—{0,1}<".

- Length Independent: For STD counter function family
stde(1) = (i)s, V £, I.

- Length Dependent: For STD?* counter function family
opty(i) = (iog, e, ¥ £, .

- Foragiven ¢, if Vi #j, |ctry(i)] = |ctre(j)|, we say that CTR is a
fixed length CFF; variable length CFF otherwise.

What can we say about the security relevant properties?
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Prefix-free and Injective CFFs

Prefix-free:
CTR is prefix-free if

V<L Vi#jeb(l), ctre(i)is not a prefix of ctr()).
CFF as an Encoding Function:

For any £ length message M, CTR(M) = (X1, ..., Xp()), where each
Xi = ctre(1)||M; and b(¥) is the least integer b that satisfies,

b
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Lemma: Prefix-free <Blockwise Collision-free

CTR is a blockwise collision-free encoding if and only if it is CTR is a
prefix-free CFF.

What about injective property?
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Prefix-free and Injective CFFs

Injective:
CTRis injective if V¥ M £ M/, CTR(M) # CTR(M’) (as sets, i.e.
CTR(M) = {X; : 1< i< b(£)}).

Lemma: Prefix-free++ — Injective

Let CTR be a prefix-free CFF. It is injective if it satisfies the following
condition,
V4,0, b(f) =b(l') = ctry = ctry.

STD, STD?P', and VAR are prefix-free and injective CFFs.



Summary of Candidate CFFs

STD  STD%! VAR
Length Dependent X v X
Length Independent | v X v
Fixed Length v v X
Variable Length X X v
Rate n=s n_un)gze n—r+2n—log26
Prefix-free v v v
Injective v v v
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Counter-Based Constructions

Xi X e (IMI)n
ho & hi hy hp—1 hp
v —e—> € ~<‘> ~é—s€‘9_._> ........ 4:?_._, h
CtHAIFA

CtMAC2

P SN e W g B

CtMAC1




Performance Comparison: CtMAC1
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Performance Comparison: CtMAC2
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Performance Comparison: CtHAIFA
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Summary of Security Results: CtHAIFA and CtH

Theorem: Second Preimage Security of CtHAIFA

CtHAIFA has full second preimage security. More specifically, for
any second preimage adversary A that makes at most g queries,
we have 39

AdV%RIAIFA(Q) < on
Theorem: AXU Security of CtH

CtHn,cTr is 1/(2" — b)-AXU where b = b(L) (the number of blocks for
the largest message).



Summary of Security Results: CtMAC1 and CtMAC2

Theorem: PRF Security of CtMACT

Let CtMac1 := CtMaclg, g, be defined based on two independently
chosen keyed blockcipher. Then,

1.5¢°

2n

Advgfl\t;\ad(t» g9,¢) < + AdvE™(t', £q)

Theorem: MAC Security of CtMAC2

Let CtMac2e, g, (S, M) be defined on two independently chosen
keyed block ciphers. Then,

T ’ .
1) Advgr\/\gaeczst(t am, QVaZ) < Oﬁan + AdV? p(t”é(qm + CIV)) + %

orge 2 r .
2 AdVEtMgaczi(t’ m, Qv, €) < 35 +AdVEP (L, £(gm + Gv)) + 5



Conclusion

- Two efficient alternatives for the standard counter scheme.
- A general notion for counters and counter based encoding.
- Counter property based security results for some schemes.

- Software performance comparison between the three counter
schemes.



Thank you.



