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Counters in Cryptography

Classical View:

⟨0⟩s, ⟨1⟩s, ⟨2⟩s, ⟨3⟩s, . . . , ⟨2s − 1⟩s

where ⟨i⟩s is the s-bits binary representation of i for some fixed s.

• Prevents collisions on the inputs to the underlying primitive.

• Standalone input: CTR mode, HAIFA, GCM, SIV.

• Encoded within message blocks: HAIFA, XORMAC, LightMAC.
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Counter-Based Input Encoding

M
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Security Needs
Blockwise Collision-free:

∀ i ̸= j, Xi ̸= Xj.
Injective:

∀ M ̸= M′, X ̸= X′.

Rate signifies Efficiency

rateSTD =
n− s
n

where s = log2 L, L being
the maximum permissible
message length.

Example
For n = 128 and s = 64, the rate is 0.5 for any message lengths.
Can we have better rate for smaller messages?
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STDopt: Length Dependent Counter Scheme

• Computes the optimal counter size (≈ log2 ℓ) for the given
message length ℓ.

rateSTDopt =
n− log2 ℓ

n

• For ℓ < L, rateSTDopt > rateSTD.

Comparison
For n = 128 bits and ℓ = 210 bits, the rate is 0.92.

Catch
What if we don’t know the length? Can we have a close
approximation of STDopt in this case?
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A Race over Unknown Distance
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A Candidate Length Independent Counter

0 , 1 , 00 , 01 , 10 , 11 , 000 . . .

• Length Independent. 3

• rate > rateSTDopt . 3

• But, is this blockwise collision-free? 7

Trivial Collision
For n = 8 and M := 0abcdefghijklmabcdef we have
X1 = 00abcdef, X2 = 1ghijklm, and X3 = 00abcdef. Clearly, X1 = X3.
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VAR: Message Length Independent Counter

• Add a small fixed length (r) counter that gets updated with the
change in counter size.

000 , 001 , 0100 , . . . , 0111 , 10000 , . . . , 10111 , 110000 , . . .

• Length Independent. 3

• Blockwise Collision-free and Injective. 3

• r ≈ log2 log2 L, for L < 2c(n), n
2 ≤ c(n) < n.

rateVAR ≈
n− r+ 2− log2 ℓ

n

Comparison
For n = 128 bits, L = 264 bits, and ℓ = 210 bits, the rate is 0.89.
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Counter Function Family (CFF)

Definition:
CTR is a family of counter functions {ctrℓ : ℓ ≤ L} where

∀ ℓ ≤ L, ctrℓ : N → {0, 1}<n.

• Length Independent: For STD counter function family
stdℓ(i) = ⟨i⟩s, ∀ ℓ, i.

• Length Dependent: For STDopt counter function family
optℓ(i) = ⟨i⟩log2 ℓ, ∀ ℓ, i.

• For a given ℓ, if ∀ i ̸= j, |ctrℓ(i)| = |ctrℓ(j)|, we say that CTR is a
fixed length CFF; variable length CFF otherwise.

What can we say about the security relevant properties?
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Prefix-free and Injective CFFs

Prefix-free:
CTR is prefix-free if

∀ ℓ ≤ L, ∀ i ̸= j ∈ b(ℓ), ctrℓ(i) is not a prefix of ctrℓ(j).

CFF as an Encoding Function:
For any ℓ length message M, CTR(M) = (X1, . . . , Xb(ℓ)), where each
Xi = ctrℓ(i)∥Mi and b(ℓ) is the least integer b that satisfies,

ℓ+ 1 ≤
b∑
i=1

(n− |ctrℓ(i)|) ≤ ℓ+ n.

Lemma: Prefix-free⇔Blockwise Collision-free
CTR is a blockwise collision-free encoding if and only if it is CTR is a
prefix-free CFF.

What about injective property?
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Prefix-free and Injective CFFs

Injective:
CTR is injective if ∀ M ̸= M′, CTR(M) ̸= CTR(M′) (as sets, i.e.
CTR(M) = {Xi : 1 ≤ i ≤ b(ℓ)}).

Lemma: Prefix-free++ =⇒ Injective
Let CTR be a prefix-free CFF. It is injective if it satisfies the following
condition,

∀ ℓ, ℓ′, b(ℓ) = b(ℓ′) ⇒ ctrℓ = ctrℓ′ .

STD, STDopt, and VAR are prefix-free and injective CFFs.
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Summary of Candidate CFFs

STD STDopt VAR

Length Dependent 7 3 7

Length Independent 3 7 3

Fixed Length 3 3 7

Variable Length 7 7 3

Rate n−s
n

n−log2 ℓ
n

n−r+2−log2 ℓ
n

Prefix-free 3 3 3

Injective 3 3 3
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Counter-Based Constructions
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Performance Comparison: CtMAC1
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Performance Comparison: CtMAC2
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Performance Comparison: CtHAIFA
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Summary of Security Results: CtHAIFA and CtH

Theorem: Second Preimage Security of CtHAIFA
CtHAIFA has full second preimage security. More specifically, for
any second preimage adversary A that makes at most q queries,
we have

Adv2PICtHAIFA(q) ≤
3q
2n .

Theorem: AXU Security of CtH
CtHΠ,CTR is 1/(2n − b)-AXU where b = b(L) (the number of blocks for
the largest message).
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Summary of Security Results: CtMAC1 and CtMAC2

Theorem: PRF Security of CtMAC1
Let CtMac1 := CtMac1EK1 ,EK2 be defined based on two independently
chosen keyed blockcipher. Then,

Advprf
CtMac1(t,q, ℓ) ≤

1.5q2
2n + Advprp

E (t′, ℓq)

Theorem: MAC Security of CtMAC2
Let CtMac2EK1 ,EK2 (s,M) be defined on two independently chosen
keyed block ciphers. Then,

1. Advforge
CtMac2st(t,qm,qv, ℓ) ≤

0.5q2
2n + Advprp

E (t′, ℓ(qm + qv)) + qv
2n

2. Advforge
CtMac2$(t,qm,qv, ℓ) ≤

q2
2n + Advprp

E (t′, ℓ(qm + qv)) + qv
2n
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Conclusion

• Two efficient alternatives for the standard counter scheme.

• A general notion for counters and counter based encoding.

• Counter property based security results for some schemes.

• Software performance comparison between the three counter
schemes.
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Thank you.
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