

A New Look at Counters: Don't Run Like Marathon in a Hundred Meter Race

Directions in Authenticated Ciphers '16, Nagoya

Avijit Dutta, Ashwin Jha and Mridul Nandi

September 27, 2016

Indian Statistical Institute Kolkata

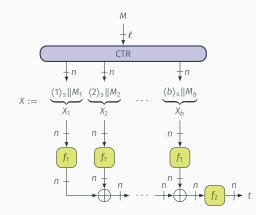
Classical View:

$$\langle 0\rangle_{\scriptscriptstyle S}, \langle 1\rangle_{\scriptscriptstyle S}, \langle 2\rangle_{\scriptscriptstyle S}, \langle 3\rangle_{\scriptscriptstyle S}, \ldots, \langle 2^{\scriptscriptstyle S}-1\rangle_{\scriptscriptstyle S}$$

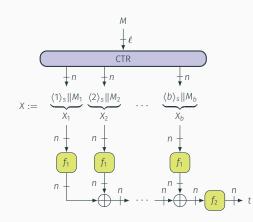
where $\langle i \rangle_s$ is the s-bits binary representation of *i* for some fixed s.

- Prevents collisions on the inputs to the underlying primitive.
- Standalone input: CTR mode, HAIFA, GCM, SIV.
- Encoded within message blocks: HAIFA, XORMAC, LightMAC.

Counter-Based Input Encoding



Counter-Based Input Encoding



Security Needs

Blockwise Collision-free: $\forall i \neq j, X_i \neq X_j.$

Injective:

 $\forall M \neq M', X \neq X'.$

Rate signifies Efficiency $rate_{STD} = \frac{n-s}{n}$ where $s = \log_2 L$, L being the maximum permissible message length.

Counter-Based Input Encoding



Security Needs

Blockwise Collision-free: $\forall i \neq j, X_i \neq X_j.$

Injective:

 $\forall M \neq M', X \neq X'.$

Rate signifies Efficiency $rate_{STD} = \frac{n-s}{n}$ where $s = \log_2 L$, L being the maximum permissible message length.

Example

For n = 128 and s = 64, the rate is 0.5 for any message lengths. Can we have better rate for smaller messages?

STD^{opt}: Length Dependent Counter Scheme

• Computes the optimal counter size ($\approx \log_2 \ell$) for the given message length ℓ .

$$rate_{\text{STD}^{opt}} = \frac{n - \log_2 \ell}{n}$$

• For $\ell < L$, $rate_{STD^{opt}} > rate_{STD}$.

Comparison

For n = 128 bits and $\ell = 2^{10}$ bits, the rate is 0.92.

STD^{opt}: Length Dependent Counter Scheme

• Computes the optimal counter size ($\approx \log_2 \ell$) for the given message length ℓ .

$$rate_{\text{STD}^{opt}} = \frac{n - \log_2 \ell}{n}$$

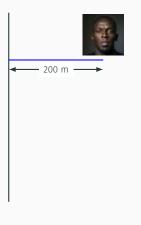
• For $\ell < L$, $rate_{STD^{opt}} > rate_{STD}$.

Comparison

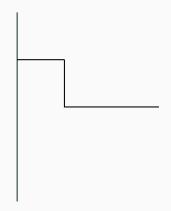
For n = 128 bits and $\ell = 2^{10}$ bits, the rate is 0.92.

Catch

What if we don't know the length? Can we have a close approximation of STD^{opt} in this case?



< 200 m>		
◀ 400 m	>	
<	10000 m	



$0\,,\,1\,,\,00\,,\,01\,,\,10\,,\,11\,,\,000\ldots$

0, 1, 00, 01, 10, 11, 000...

1

• Length Independent.

0, 1, 00, 01, 10, 11, 000...

- Length Independent.
- rate > rate_{STD^{opt}}.

0, 1, 00, 01, 10, 11, 000...

X

- Length Independent.
- $rate > rate_{STD^{opt}}$.
- But, is this blockwise collision-free?

0, 1, 00, 01, 10, 11, 000...

X

- Length Independent. ✓
- rate > rate_{STD^{opt}}.
- But, is this blockwise collision-free?

Trivial Collision

For n = 8 and M := 0 abcdefghijklmabcdef we have

 $X_1 = 00abcdef$, $X_2 = 1ghijklm$, and $X_3 = 00abcdef$. Clearly, $X_1 = X_3$.

VAR: Message Length Independent Counter

• Add a small fixed length (r) counter that gets updated with the change in counter size.

```
000, 001, 0100, ..., 0111, 10000, ..., 10111, 110000, ...
```

VAR: Message Length Independent Counter

• Add a small fixed length (r) counter that gets updated with the change in counter size.

 $000, 001, 0100, \dots, 0111, 10000, \dots, 10111, 110000, \dots$

- Length Independent.
- Blockwise Collision-free and Injective.

VAR: Message Length Independent Counter

• Add a small fixed length (r) counter that gets updated with the change in counter size.

 $000, 001, 0100, \dots, 0111, 10000, \dots, 10111, 110000, \dots$

- Length Independent.
- Blockwise Collision-free and Injective.
- $r \approx \log_2 \log_2 L$, for $L < 2^{c(n)}$, $\frac{n}{2} \leq c(n) < n$.

$$rate_{VAR} \approx \frac{n-r+2-\log_2\ell}{n}$$

Comparison

For n = 128 bits, $L = 2^{64}$ bits, and $\ell = 2^{10}$ bits, the rate is 0.89.

Counter Function Family (CFF)

Definition:

CTR is a family of counter functions $\{ctr_{\ell} : \ell \leq L\}$ where

```
\forall \ \ell \leq L, \ \ \mathsf{ctr}_{\ell} : \mathbb{N} \to \{0, 1\}^{< n}.
```

- Length Independent: For STD counter function family $std_{\ell}(i) = \langle i \rangle_{s}, \forall \ell, i.$
- Length Dependent: For STD^{opt} counter function family $\text{opt}_{\ell}(i) = \langle i \rangle_{\log_2 \ell}, \forall \ell, i.$
- For a given ℓ , if $\forall i \neq j$, $|ctr_{\ell}(i)| = |ctr_{\ell}(j)|$, we say that CTR is a fixed length CFF; variable length CFF otherwise.

Counter Function Family (CFF)

Definition:

CTR is a family of counter functions $\{ctr_{\ell} : \ell \leq L\}$ where

```
\forall \ \ell \leq L, \ \ \mathsf{ctr}_{\ell} : \mathbb{N} \to \{0, 1\}^{< n}.
```

- Length Independent: For STD counter function family $std_{\ell}(i) = \langle i \rangle_{s}, \forall \ell, i.$
- Length Dependent: For STD^{opt} counter function family $\text{opt}_{\ell}(i) = \langle i \rangle_{\log_2 \ell}, \forall \ell, i.$
- For a given ℓ , if $\forall i \neq j$, $|ctr_{\ell}(i)| = |ctr_{\ell}(j)|$, we say that CTR is a fixed length CFF; variable length CFF otherwise.

What can we say about the security relevant properties?

Prefix-free and Injective CFFs

Prefix-free:

CTR is prefix-free if

 $\forall \ell \leq L, \forall i \neq j \in b(\ell), \operatorname{ctr}_{\ell}(i) \text{ is not a prefix of } \operatorname{ctr}_{\ell}(j).$

Prefix-free:

CTR is prefix-free if

 $\forall \ell \leq L, \forall i \neq j \in b(\ell), \operatorname{ctr}_{\ell}(i) \text{ is not a prefix of } \operatorname{ctr}_{\ell}(j).$

CFF as an Encoding Function:

For any ℓ length message M, CTR $(M) = (X_1, \dots, X_{b(\ell)})$, where each $X_i = \operatorname{ctr}_{\ell}(i) || M_i$ and $b(\ell)$ is the least integer b that satisfies,

$$\ell+1 \leq \sum_{i=1}^{b} (n-|\mathsf{ctr}_{\ell}(i)|) \leq \ell+n.$$

Prefix-free:

CTR is prefix-free if

 $\forall \ell \leq L, \forall i \neq j \in b(\ell), \operatorname{ctr}_{\ell}(i) \text{ is not a prefix of } \operatorname{ctr}_{\ell}(j).$

CFF as an Encoding Function:

For any ℓ length message M, CTR $(M) = (X_1, \dots, X_{b(\ell)})$, where each $X_i = \operatorname{ctr}_{\ell}(i) || M_i$ and $b(\ell)$ is the least integer b that satisfies,

$$\ell+1 \leq \sum_{i=1}^{b} (n - |\operatorname{ctr}_{\ell}(i)|) \leq \ell + n.$$

Lemma: Prefix-free ⇔Blockwise Collision-free

CTR is a blockwise collision-free encoding if and only if it is CTR is a prefix-free CFF.

Prefix-free:

CTR is prefix-free if

 $\forall \ell \leq L, \forall i \neq j \in b(\ell), \operatorname{ctr}_{\ell}(i) \text{ is not a prefix of } \operatorname{ctr}_{\ell}(j).$

CFF as an Encoding Function:

For any ℓ length message M, CTR $(M) = (X_1, \dots, X_{b(\ell)})$, where each $X_i = \operatorname{ctr}_{\ell}(i) || M_i$ and $b(\ell)$ is the least integer b that satisfies,

$$\ell+1 \leq \sum_{i=1}^{b} (n - |\operatorname{ctr}_{\ell}(i)|) \leq \ell + n.$$

Lemma: Prefix-free ⇔Blockwise Collision-free

CTR is a blockwise collision-free encoding if and only if it is CTR is a prefix-free CFF.

What about injective property?

Injective:

CTR is injective if $\forall M \neq M'$, CTR(M) \neq CTR(M') (as sets, i.e. CTR(M) = { X_i : $1 \le i \le b(\ell)$ }).

Injective:

CTR is injective if $\forall M \neq M'$, CTR(M) \neq CTR(M') (as sets, i.e. CTR(M) = { X_i : $1 \le i \le b(\ell)$ }).

Lemma: Prefix-free++ \implies Injective

Let CTR be a prefix-free CFF. It is injective if it satisfies the following condition,

$$\forall \ \ell, \ell', \ b(\ell) = b(\ell') \Rightarrow \operatorname{ctr}_{\ell} = \operatorname{ctr}_{\ell'}.$$

Injective:

CTR is injective if $\forall M \neq M'$, CTR(M) \neq CTR(M') (as sets, i.e. CTR(M) = { X_i : $1 \le i \le b(\ell)$ }).

Lemma: Prefix-free++ \implies Injective

Let CTR be a prefix-free CFF. It is injective if it satisfies the following condition,

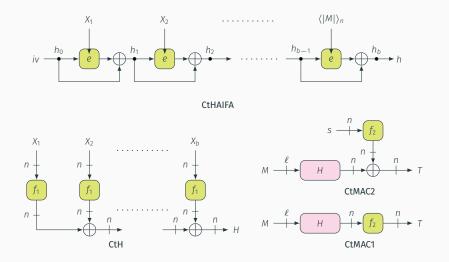
$$\forall \ \ell, \ell', \ b(\ell) = b(\ell') \Rightarrow \operatorname{ctr}_{\ell} = \operatorname{ctr}_{\ell'}.$$

STD, STD^{opt}, and VAR are prefix-free and injective CFFs.

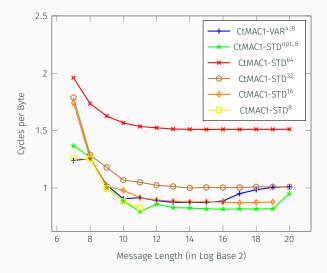
Summary of Candidate CFFs

	STD	STD ^{opt}	VAR
Length Dependent	×	1	×
Length Independent	1	×	1
Fixed Length	1	1	×
Variable Length	×	×	1
Rate	<u>n−s</u> n	$\frac{n - \log_2 \ell}{n}$	$\frac{n\!-\!r\!+\!2\!-\!\log_2\ell}{n}$
Prefix-free	1	1	1
Injective	1	1	1

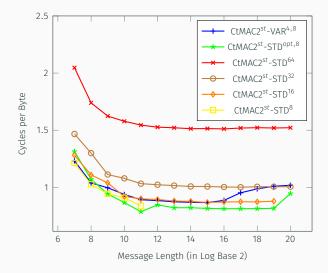
Counter-Based Constructions



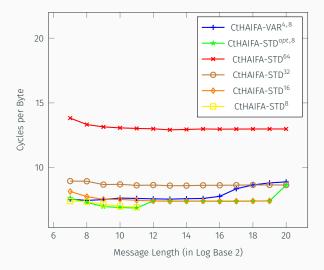
Performance Comparison: CtMAC1



Performance Comparison: CtMAC2



Performance Comparison: CtHAIFA



Theorem: Second Preimage Security of CtHAIFA

CtHAIFA has full second preimage security. More specifically, for any second preimage adversary A that makes at most q queries, we have

$$\operatorname{Adv}_{\operatorname{CtHAIFA}}^{\operatorname{2PI}}(q) \leq \frac{3q}{2^n}.$$

Theorem: AXU Security of CtH

 $CtH_{\Pi,CTR}$ is $1/(2^n - b)$ -AXU where b = b(L) (the number of blocks for the largest message).

Theorem: PRF Security of CtMAC1

Let $CtMac1 := CtMac1_{E_{K_1}, E_{K_2}}$ be defined based on two independently chosen keyed blockcipher. Then,

$$\operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{CtMac1}}}^{\operatorname{prf}}(t,q,\ell) \leq \frac{1.5q^2}{2^n} + \operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{E}}}^{\operatorname{prp}}(t',\ell q)$$

Theorem: MAC Security of CtMAC2

Let $CtMac2_{E_{K_1},E_{K_2}}(s, M)$ be defined on two independently chosen keyed block ciphers. Then,

1.
$$\mathsf{Adv}^{\text{forge}}_{\mathsf{CtMac2^{st}}}(t, q_m, q_v, \ell) \leq \frac{0.5q^2}{2^n} + \mathsf{Adv}^{\text{prp}}_E(t', \ell(q_m + q_v)) + \frac{q_v}{2^n}$$

2.
$$\mathsf{Adv}^{\mathrm{forge}}_{\mathsf{CtMac2}^{\$}}(t, q_m, q_v, \ell) \leq \frac{q^2}{2^n} + \mathsf{Adv}^{\mathrm{prp}}_E(t', \ell(q_m + q_v)) + \frac{q_v}{2^n}$$

- Two efficient alternatives for the standard counter scheme.
- A general notion for counters and counter based encoding.
- Counter property based security results for some schemes.
- Software performance comparison between the three counter schemes.

Thank you.