An Online Authenticated Encryption scheme with an Optimal Single-Keyed Inverse-Free Construction DIAC 2016, Nagoya, Japan

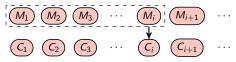
Ritam Bhaumik and Mridul Nandi

Indian Statistical Institute, Kolkata

27 September 2016

Online Encryption: Authenticated or Otherwise

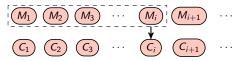
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Online Encryption: Authenticated or Otherwise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• What does Online mean?

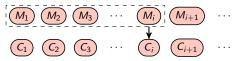
Online Encryption: Authenticated or Otherwise


• What does Online mean?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Online Encryption: Authenticated or Otherwise

• What does Online mean?

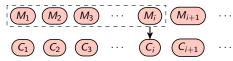


• *i*-th ciphertext block not affected by (> i)-th plaintext blocks

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Online Encryption: Authenticated or Otherwise

• What does Online mean?

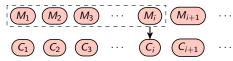


• *i*-th ciphertext block not affected by (> i)-th plaintext blocks

• this is the classical definition; there can be variants

Online Encryption: Authenticated or Otherwise

• What does Online mean?

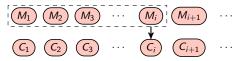

• *i*-th ciphertext block not affected by (> i)-th plaintext blocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- this is the classical definition; there can be variants
- central idea: one-pass computation

Online Encryption: Authenticated or Otherwise

• What does Online mean?

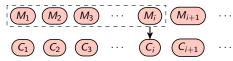


• *i*-th ciphertext block not affected by (> i)-th plaintext blocks

- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well

Online Encryption: Authenticated or Otherwise

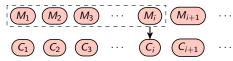
• What does Online mean?



• *i*-th ciphertext block not affected by (> i)-th plaintext blocks

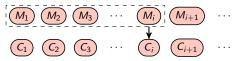
- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well
- Online vs. Full

Online Encryption: Authenticated or Otherwise


• What does Online mean?

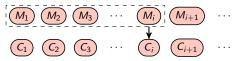
- *i*-th ciphertext block not affected by (> i)-th plaintext blocks
- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well
- Online vs. Full
 - full encryption only reveals whether two plaintexts are identical

Online Encryption: Authenticated or Otherwise


• What does Online mean?

- *i*-th ciphertext block not affected by (> i)-th plaintext blocks
- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well
- Online vs. Full
 - full encryption only reveals whether two plaintexts are identical
 - online encryption leaks length of common prefix of plaintexts

Online Encryption: Authenticated or Otherwise


• What does Online mean?

- *i*-th ciphertext block not affected by (> i)-th plaintext blocks
- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well
- Online vs. Full
 - full encryption only reveals whether two plaintexts are identical
 - online encryption leaks length of common prefix of plaintexts
 - this is the only security degradation

Online Encryption: Authenticated or Otherwise

• What does Online mean?

- *i*-th ciphertext block not affected by (> i)-th plaintext blocks
- this is the classical definition; there can be variants
- central idea: one-pass computation
- frequently low-memory as well

• Online vs. Full

- full encryption only reveals whether two plaintexts are identical
- online encryption leaks length of common prefix of plaintexts

- this is the only security degradation
- performance often outweighs this degradation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variants of Online Encryption

Variants of Online Encryption

Online-but-last

Variants of Online Encryption

• Online-but-last

• last block violates online property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Diblock-online

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

• a diblock is a chunk of two blocks

Variants of Online Encryption

• Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

- a diblock is a chunk of two blocks
- diblock-online property replaces blocks with diblocks

Variants of Online Encryption

• Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

- a diblock is a chunk of two blocks
- diblock-online property replaces blocks with diblocks

• necessary for inverse-free constructions

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

- a diblock is a chunk of two blocks
- diblock-online property replaces blocks with diblocks

• necessary for inverse-free constructions

Tweakable

Variants of Online Encryption

• Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

- a diblock is a chunk of two blocks
- diblock-online property replaces blocks with diblocks

• necessary for inverse-free constructions

Tweakable

• takes an additional input as tweak

Variants of Online Encryption

Online-but-last

- last block violates online property
- only reveals length of proper prefixes
- at least one full block of randomness per query

Diblock-online

- a diblock is a chunk of two blocks
- diblock-online property replaces blocks with diblocks
- necessary for inverse-free constructions

Tweakable

- takes an additional input as tweak
- each tweak produces a different online permutation

Online Authenticated Encryption Security Game

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Online Authenticated Encryption Security Game

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Encryption Query:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

• $\ensuremath{\hat{\$}}$ is a random tweakable online permutation

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\ensuremath{\hat{\$}}$ is a random tweakable online permutation
- Decryption Query:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\ensuremath{\hat{\$}}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\ensuremath{\hat{\$}}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

• $Dec(A, C) = \bot$ for invalid (A, C)

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\hat{\$}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

- $Dec(A, C) = \bot$ for invalid (A, C)
- Real oracle:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\hat{\$}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

- $Dec(A, C) = \bot$ for invalid (A, C)
- Real oracle:
- Ideal oracle:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- \hat{S} is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

- $Dec(A, C) = \bot$ for invalid (A, C)
- Real oracle:
- Ideal oracle:

Goals:

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

- $\hat{\$}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

- $Dec(A, C) = \bot for invalid (A, C)$
- Real oracle: Dec(A, C)
 Ideal oracle: ⊥
- Goals:
 - *Privacy:* Indistinguishable from $\hat{\$}$

Online Authenticated Encryption Security Game

- Encryption Query:
 - Real oracle:
 - Ideal oracle:

Dec(A, C)

- $\hat{\$}$ is a random tweakable online permutation
- Decryption Query:
 - Dec(A, C) = M for valid (A, C) (i.e., when Enc(A, M) = C)

- $Dec(A, C) = \bot for invalid (A, C)$
- Real oracle:
- Ideal oracle:

• Goals:

- Privacy: Indistinguishable from $\hat{\$}$
- *Integrity:* Unforgeable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

Remarks

• $Enc(A, \cdot)$ should be injective for each A, for correctness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

• $Enc(A, \cdot)$ should be injective for each A, for correctness

• $Enc(A_1, \cdot)$ and $Enc(A_2, \cdot)$ should be independent

Remarks

• $Enc(A, \cdot)$ should be injective for each A, for correctness

- $Enc(A_1, \cdot)$ and $Enc(A_2, \cdot)$ should be independent
- $Enc(A, \cdot)$ should *not* be surjective

Remarks

- $Enc(A, \cdot)$ should be injective for each A, for correctness
- $Enc(A_1, \cdot)$ and $Enc(A_2, \cdot)$ should be independent
- $Enc(A, \cdot)$ should *not* be surjective
- in fact, range of $Enc(A, \cdot)$ should only be a small fraction of the co-domain

Remarks

- $Enc(A, \cdot)$ should be injective for each A, for correctness
- $Enc(A_1, \cdot)$ and $Enc(A_2, \cdot)$ should be independent
- $Enc(A, \cdot)$ should *not* be surjective
- in fact, range of Enc(A, ·) should only be a small fraction of the co-domain

• typically, $Enc(A, \cdot)$ is a length-expanding function

Remarks

- $Enc(A, \cdot)$ should be injective for each A, for correctness
- $Enc(A_1, \cdot)$ and $Enc(A_2, \cdot)$ should be independent
- $Enc(A, \cdot)$ should *not* be surjective
- in fact, range of Enc(A, ·) should only be a small fraction of the co-domain

• typically, $Enc(A, \cdot)$ is a length-expanding function

• integrity equivalent to number of expansion bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

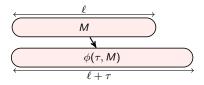
Generic Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generic Construction

• Toolkit:

Generic Construction

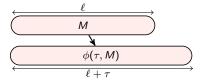

- Toolkit:
 - $P(\cdot, \cdot)$ is a variable input-length tweakable online cipher

Generic Construction

- Toolkit:
 - P(·, ·) is a variable input-length tweakable online cipher
 φ(τ, ·) is a suitable τ-expanding injective padding

Generic Construction

- Toolkit:
 - P(·,·) is a variable input-length tweakable online cipher
 φ(τ, ·) is a suitable τ-expanding injective padding

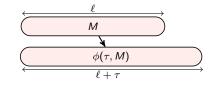


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generic Construction

- Toolkit:
 - P(·,·) is a variable input-length tweakable online cipher
 φ(τ,·) is a suitable τ-expanding injective padding

• e.g.,
$$\phi(\tau, M) = M || 0^{\tau}$$

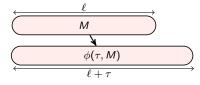


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generic Construction

- Toolkit:
 - P(·,·) is a variable input-length tweakable online cipher
 φ(τ,·) is a suitable τ-expanding injective padding

• e.g.,
$$\phi(\tau, M) = M || 0^{\tau}$$

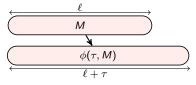


• Claim:

Generic Construction

- Toolkit:
 - P(·,·) is a variable input-length tweakable online cipher
 φ(τ,·) is a suitable τ-expanding injective padding

• e.g.,
$$\phi(\tau, M) = M || 0^{\tau}$$

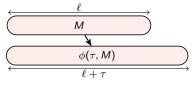

• Claim:

• $\tilde{P_{\tau}}(\cdot, \cdot) = P(\cdot, \phi(\tau, \cdot))$ is a τ -expanding OAE scheme

Generic Construction

- Toolkit:
 - P(·,·) is a variable input-length tweakable online cipher
 φ(τ, ·) is a suitable τ-expanding injective padding

• e.g.,
$$\phi(\tau, M) = M || 0^{\tau}$$



- Claim:
 - $\tilde{P}_{\tau}(\cdot, \cdot) = P(\cdot, \phi(\tau, \cdot))$ is a τ -expanding OAE scheme $\tilde{P}(\cdot, \cdot, \cdot) = P(\cdot, \phi(\cdot, \cdot))$ is a variable-stretch OAE scheme

Generic Construction

- Toolkit:
 - $P(\cdot, \cdot)$ is a variable input-length tweakable online cipher
 - $\phi(\tau, \cdot)$ is a suitable τ -expanding injective padding

• e.g.,
$$\phi(\tau, M) = M || 0^{\tau}$$

- Claim:
 - $\tilde{P}_{\tau}(\cdot, \cdot) = P(\cdot, \phi(\tau, \cdot))$ is a τ -expanding OAE scheme $\tilde{P}(\cdot, \cdot, \cdot) = P(\cdot, \phi(\cdot, \cdot))$ is a variable-stretch OAE scheme

 - (τ, A, C) is valid when $P^{-1}(A, C) \in \text{range of } \phi(\tau, \cdot)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

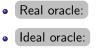
Leakage Resilience

Leakage Resilience

 Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)

Leakage Resilience

- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:


Leakage Resilience

- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:
 - Real oracle:

Leakage Resilience

- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:

Leakage Resilience

- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:

• Leakage-resilience when *P* is online SPRP (CCA-secure):

Leakage Resilience

- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:

- Leakage-resilience when *P* is online SPRP (CCA-secure):
 - When $P^{-1}(A, C) \notin$ range of $\phi(\tau, \cdot)$, no help in forging

Leakage Resilience

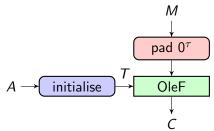
- Another property of recent interest (leakage-resilient/INT-RUP/Robust/Subtle)
- Leakage model of generic construction:

- Leakage-resilience when *P* is online SPRP (CCA-secure):
 - When $P^{-1}(A, C) \notin$ range of $\phi(\tau, \cdot)$, no help in forging

• By SPRP property, no help in distinguishing attack

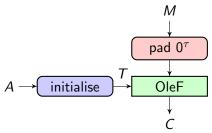
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

OIAF: An inverse-free OAE scheme


OIAF: An inverse-free OAE scheme

• Deterministic Diblock-online Authenticated Encryption with Associated Data

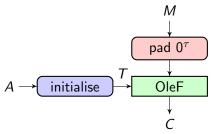
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ


OIAF: An inverse-free OAE scheme

• Deterministic Diblock-online Authenticated Encryption with Associated Data

OIAF: An inverse-free OAE scheme

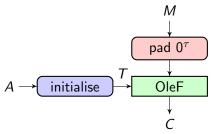
• Deterministic Diblock-online Authenticated Encryption with Associated Data



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

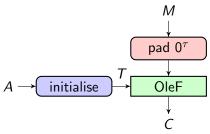
• OleF is a tweakable (diblock) online cipher

OIAF: An inverse-free OAE scheme


• Deterministic Diblock-online Authenticated Encryption with Associated Data

- OleF is a tweakable (diblock) online cipher
- deterministic (uses no nonce)

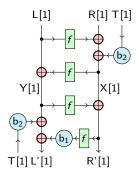
OIAF: An inverse-free OAE scheme


• Deterministic Diblock-online Authenticated Encryption with Associated Data

- OleF is a tweakable (diblock) online cipher
- deterministic (uses no nonce)
- tweak T obtained from associated data A through a PMAC-like construction

OIAF: An inverse-free OAE scheme

• Deterministic Diblock-online Authenticated Encryption with Associated Data

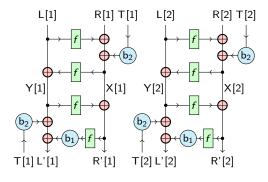


- OleF is a tweakable (diblock) online cipher
- deterministic (uses no nonce)
- tweak *T* obtained from associated data *A* through a PMAC-like construction
- integrity upto 2n bits

OleF: A tweakable diblock-online cipher

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

OleF: A tweakable diblock-online cipher



T[1] is the tweak

Figure: Tweakable OleF for ℓ Complete Diblocks

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

OleF: A tweakable diblock-online cipher

 $\mathsf{T}[1] \text{ is the tweak } \qquad \mathsf{T}[2] = \mathsf{X}[1] \oplus \mathsf{Y}[1]$

Figure: Tweakable OleF for ℓ Complete Diblocks

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

OleF: A tweakable diblock-online cipher

Figure: Tweakable OleF for ℓ Complete Diblocks

(ロ)、(型)、(E)、(E)、 E) の(の)

Handling Variable Length Inputs

Handling Variable Length Inputs

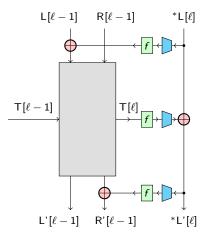


Figure: Tweakable OleF for Partial Diblocks, where $L[\ell]$ has less than *n* bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Handling Variable Length Inputs

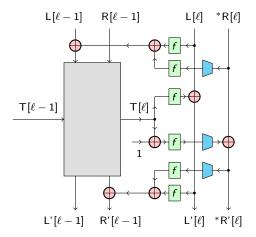


Figure: Tweakable OleF for Partial Diblocks, where $R[\ell]$ has less than *n* bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(ロ)、(型)、(E)、(E)、 E) の(の)

Getting Tweak from Associated Data

Getting Tweak from Associated Data

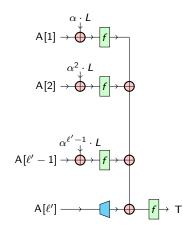


Figure: Obtaining tweak T from Associated Data

Getting Tweak from Associated Data

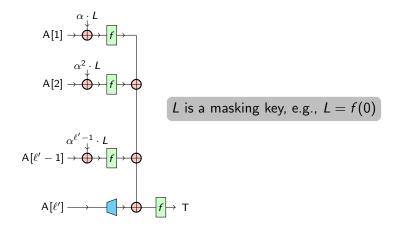


Figure: Obtaining tweak T from Associated Data

Getting Tweak from Associated Data

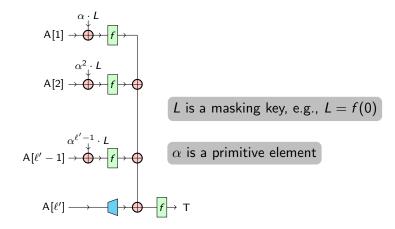


Figure: Obtaining tweak T from Associated Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary of Advantages

Summary of Advantages

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary of Advantages

- an inverse-free design
 - does not require E_{K}^{-1}

Summary of Advantages

- an inverse-free design
 - does not require E_{K}^{-1}
 - it is sufficient to have E_K a PRP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary of Advantages

- an inverse-free design
 - does not require E_{K}^{-1}
 - it is sufficient to have E_K a PRP

• E_K^{-1} is at times slower

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_{K}^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is **optimal**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_{K}^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is optimal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

• leakage-resilient

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_{K}^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is optimal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- Ieakage-resilient
- variable-stretch

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_{K}^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is optimal

- leakage-resilient
- variable-stretch
- integrity upto 2n bits

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_{K}^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is **optimal**

- leakage-resilient
- variable-stretch
- integrity upto 2n bits
- single-keyed construction

Summary of Advantages

- an inverse-free design
 - does not require E_K^{-1}
 - it is sufficient to have E_K a PRP
 - E_K^{-1} is at times slower
- 2 *f*-calls per block (for *M*), which is **optimal**

- leakage-resilient
- variable-stretch
- integrity upto 2n bits
- single-keyed construction
- provably secure

Thank you for your attention.

Judge a man by his questions rather than his answers. [Voltaire]