

Some thoughts on AEZ v. 4

Viet Tung Hoang Florida State University USA

Ted Krovetz Sacramento State USA **Phillip Rogaway** Univ of California, Davis USA

With thanks to **Tetsu Iwata** and **Shiho Moriai** for organizing this workshop!

DIAC 2016

Nagoya, Japan 27 September 2016

Reluctant to give a talk

- No changes for Round-3
- Talks @ DIAC 2014 EUROCRYPT 2015 Several AE survey talks

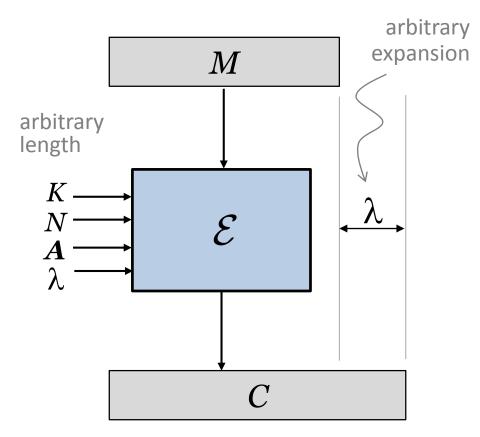
But some reasons to do so

- My view of the mode has evolved
- Attacks @ ASIACRYPT 2015 and at FSE 2017
- AEZ is already in use (should it be?)

What kind of object is AEZ?

An Robust-AE scheme

Encrypt (K, N, A, M, λ)



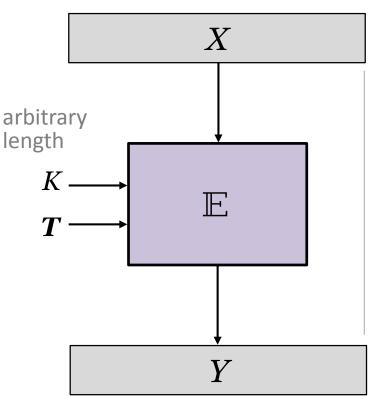
Should look like a uniform λ -expanding injection (ind for N, A, λ) (forward + backward oracles)

AIL / VIL blockcipherWide-block blockcipherAn enciphering scheme

A Generalized Blockcipher

Encipher (K, T, X)

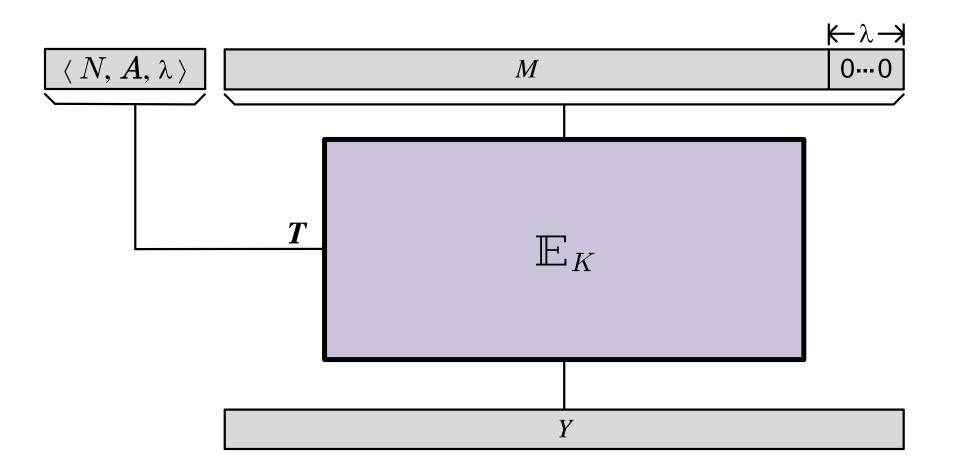
arbitrary length



Should look like a uniform **permutation** (ind for all *T*) (forward and backward oracles)

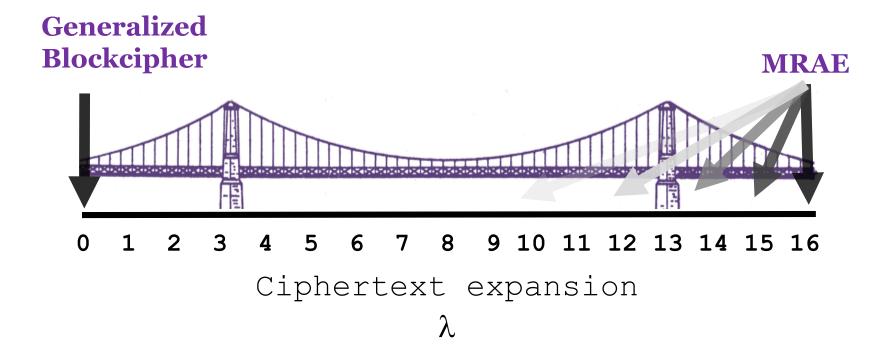
Robust-AE ⇔ Generalized Blockcipher

Following [BR00, ST13]



The natural construction, "enciphering-based AE," to make an RAE scheme from a generalized blockcipher

Unifying MRAE and Blockciphers



Claims lurking behind AEZ

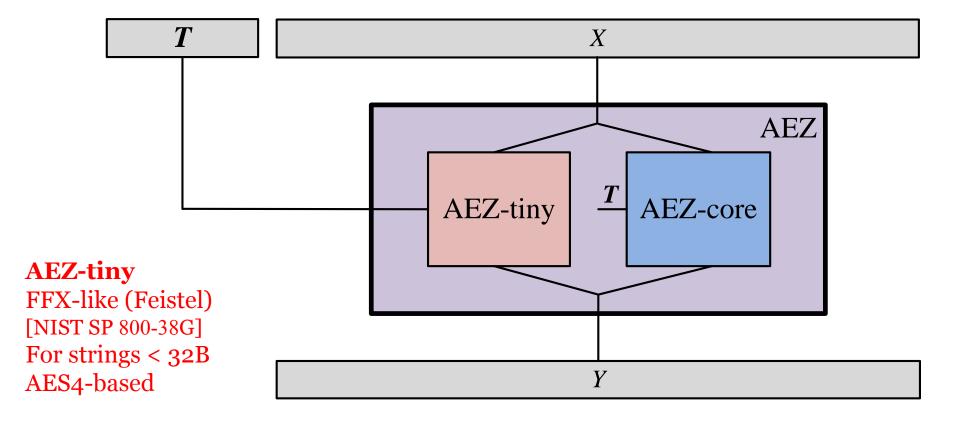
(1) Enciphering-based AE is a great way to achieve AE: very strong properties – not necessarily expensive

- a) If (*M*, *A*) tuples are known not to repeat, no nonce is needed
- b) Nonce repetitions: privacy loss is limited to revealing repetitions in (*N*, *A*, *M*) tuples, authenticity not damaged at all.
- c) Any authenticator-length can be selected, achieving best-possible authenticity for this amount of stretch.
- d) If there's redundancy in plaintexts whose presence is verified on decryption, this augments authenticity
- e) By last two properties: one can minimize length-expansion for bandwidth-constrained apps
- f) If a decrypting party leaks some or all of a putative plaintext that was supposed to be squelched because of an authenticity-check failure, no problem.

(2) A generalized blockcipher is a great tool to have around Conceptual simplicity and versatility: it's an AE scheme, a PRG, a MAC, a PRF, a hash function, an entropy extractor, ...

The first concrete construction of a generalized blockcipher

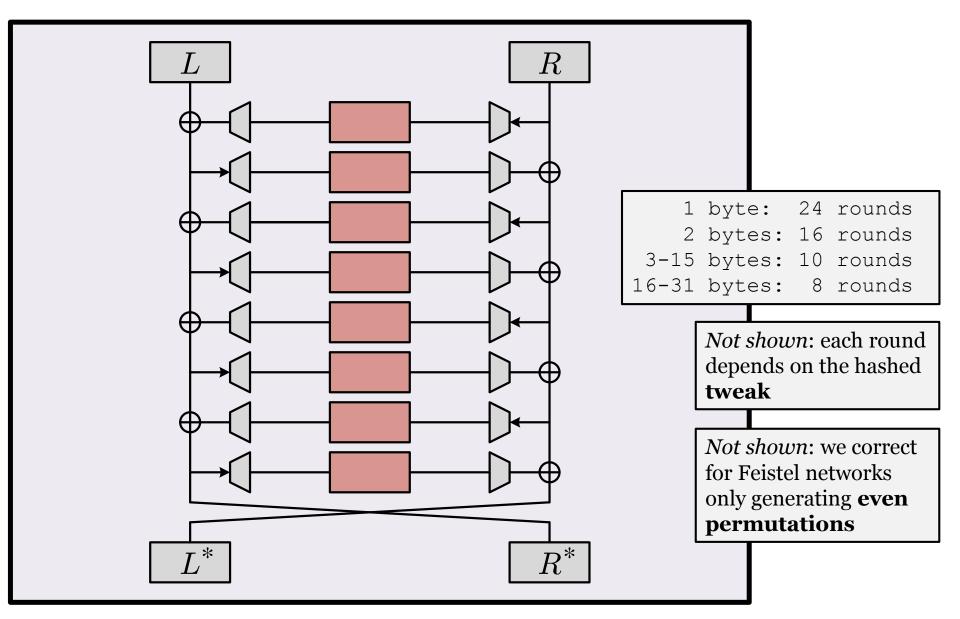
(although VIL wide-block blockciphers like **EME2** [Halevi; Halevi-Rogaway] come very close)



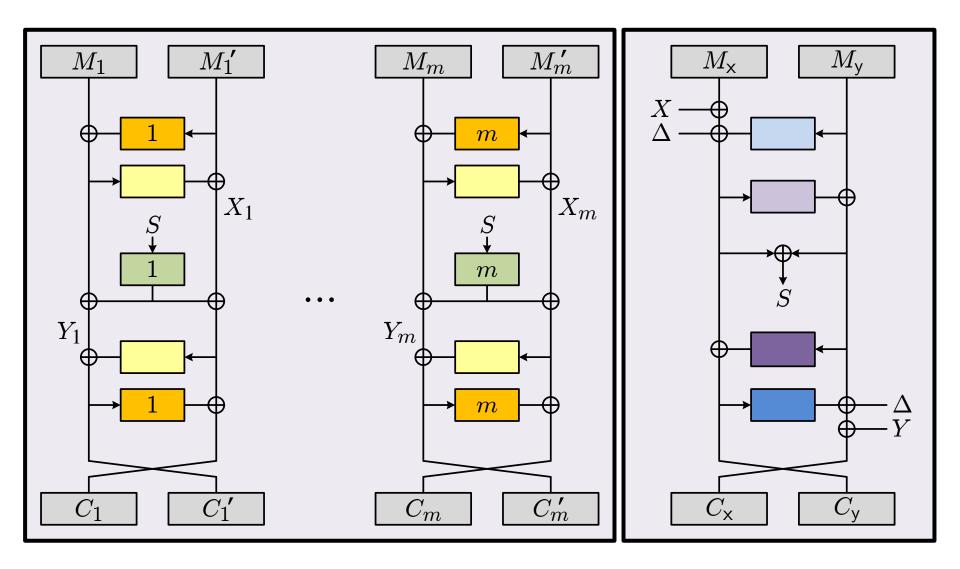
Structure of AEZ

AEZ-core Builds on EME [HR04] and OTR [M14] For strings ≥ 32B AES4 & AES based.

AEZ-tiny



AEZ-core



What's to Like?

Defense-in-depth and good speed

- The security target. Robust-AE is a very strong notion implies almost all security properties one might hope for.
 Very few MRAE schemes remain in round-3.
- Wonderful **versatility**, **ease of use** arbitrary-length keys, arbitrary ciphertext expansion, single-version scheme
- Amazing **speed** (in SW with AES-NI: peak 0.63 cpb Skylake; 1.0 AES-equivalents/block) considering the goal. Two-pass schemes are *not* inherently slow. HW performance looks respectable. **Quick-rejection** of invalid messages
- A proof for AEZ-core, to the birthday bound, in the prove-then-prune paradigm

What's not to Like?

- Scheme is **very complex**. *Anything-but-EZ* in HW... and not easy for the SW, either. 58 lines of dense pseudocode.
- Aggressively optimized **not** a conservative design.
- There are birthday key-recovery attacks: [Chaigneau, Gilbert 2017] (2^{66.5} chosen plaintexts) (v.4), following [Fuhr, Leurent, Suder 2015] (v.3). Note: 2⁴⁸ byte usage cap.
- A **prove-then-prune** proof does not, by itself, imply security; **cryptanalysis is still needed**. Should not be treated as a proof in the same sense as assuming some primitive is a PRP.
- Are the RAE \ MRAE properties (particularly the possibility of small ciphertext expansion) useful?

Seduced by speed?

"Don't worry about speed. An RAE scheme / generalized blockcipher is very strong goal, and a scheme achieving it based on <code>aesenc</code> is going to need to be $2 \times - 3 \times$ slower, per block, than AES."

"No! We can **match** AES's speed in an RAE scheme. We can even get features like fast-reject and encipher-direction only processing, at the same time." \rightarrow AEZ

"No!! We should be able to **exceed** AES speed in an aesencbased MRAE scheme, and even an RAE scheme. What goes for AEGIS/Tioxin can be made to fly here, too."

For in the future, I'd like to see A generalized blockcipher / RAE scheme

that's **much simpler** than AEZ, yet

Maybe a healthier alternative:

Enjoys (good old-fashioned) provable security

(DJB "boring crypto")

Is just as fast, or faster

Feels more conservative

Apparently has BBB security

Has *at least* an ideal-permutation model proof of security, with good bounds

But, for now: AEZ is the best there is for this degree of versatility and defense in depth.

AEZ (v4)

1912		102
100	algorithm Encrypt (K, N, A, τ, M)	// AEZ authenticated encryption
101	$X \leftarrow M \parallel 0^{\tau}; (A_1, \dots, A_a) \leftarrow A$	
102	$T \leftarrow ([\tau]_{128}, N, A_1, \dots, A_a)$	
103	if $M = \varepsilon$ then return AEZ-prf (K, T, τ)	
104	return $Encipher(K, T, X)$	
110	algorithm Decrypt (K, N, A, τ, C)	// AEZ authenticated decryption
111	$(A_1,\ldots,A_a) \leftarrow \mathbf{A}; \ \mathbf{T} \leftarrow ([\tau]_{128}, N, A_1,\ldots,A_a)$	MMX IS SHITS AN IN ADMINISTER AND SHITTEN AN
112	if $ C < \tau$ then return \perp	
113	if $ C = \tau$ then if $C = AEZ$ -prf (K, T, τ) then return ε else return	ı⊥fi fi
114	$X \leftarrow \text{Decipher}(K, T, C)$	
115	$M \parallel Z \leftarrow X$ where $ Z = \tau$	
116	if $(Z = 0^{\tau})$ then return M else return \bot	
200	algorithm Encipher (K, T, X)	// AEZ enciphering
201	if $ X < 256$ then return Encipher-AEZ-tiny (K, T, X)	
202	if $ X \ge 256$ then return Encipher-AEZ-core (K, T, X)	

algorithm Encipher-AEZ-tiny(K, T, M) // AEZ-tiny enciphering $\mu \leftarrow |M|; n \leftarrow \mu/2; \Delta \leftarrow \text{AEZ-hash}(K, T)$ **if** $\mu = 8$ **then** $k \leftarrow 24$ **else if** $\mu = 16$ **then** $k \leftarrow 16$ **else if** $\mu < 128$ **then** $k \leftarrow 10$ **else** $k \leftarrow 8$ **fi** $L \leftarrow M[1 ... n]; R \leftarrow M[n+1 ... \mu];$ **if** $\mu \ge 128$ **then** $i \leftarrow 6$ **else** $i \leftarrow 7$ **fi for** $j \leftarrow 0$ **to** k - 1 **do** $R' \leftarrow L \oplus ((\mathbb{E}_{K}^{0,i}(\Delta \oplus R10^* \oplus [j]_{128}))[1 ... n]); L \leftarrow R; R \leftarrow R'$ **od** $C \leftarrow R \parallel L;$ **if** $\mu < 128$ **then** $C \leftarrow C \oplus (\mathbb{E}_{K}^{0,3}(\Delta \oplus (C0^* \lor 10^*)) \land 10^*)$ **fi return** C

220 **algorithm** Encipher-AEZ-core(
$$K, T, M$$
) // AEZ-core enciphering
221 $\Delta \leftarrow AEZ$ -hash(K, T)
222 $M_1M'_1 \cdots M_mM'_m M_{uv} M_xM_y \leftarrow M$ where $|M_1| = \cdots = |M'_m| = |M_x| = |M_y| = 128$ and $|M_{uv}| < 256$
223 $d \leftarrow |M_{uv}|$; **if** $d \le 127$ **then** $M_u \leftarrow M_{uv}$; $M_v \leftarrow \varepsilon$ **else** $M_u \leftarrow M_{uv}[1..128]$; $M_v \leftarrow M_{uv}[129..|M_{uv}|]$ **fi**
224 **for** $i \leftarrow 1$ **to** m **do** $W_i \leftarrow M_i \oplus E_K^{1,i}(M'_i)$; $X_i \leftarrow M'_i \oplus E_K^{0,0}(W_i)$ **od**
225 **if** $d = 0$ **then** $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus 0$ **else if** $d \le 127$ **then** $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus E_K^{0,4}(M_u 10^*)$
226 **else** $X \leftarrow X_1 \oplus \cdots \oplus X_m \oplus E_K^{0,4}(M_u) \oplus E_K^{0,5}(M_v 10^*)$ **fi**
227 $S_x \leftarrow M_x \oplus \Delta \oplus X \oplus E_K^{0,1}(M_y)$; $S_y \leftarrow M_y \oplus E_K^{-1,1}(S_x)$; $S \leftarrow S_x \oplus S_y$
228 **for** $i \leftarrow 1$ **to** m **do** $S' \leftarrow E_K^{2,i}(S)$; $Y_i \leftarrow W_i \oplus S'$; $Z_i \leftarrow X_i \oplus S'$; $C'_i \leftarrow Y_i \oplus E_K^{0,0}(Z_i)$; $C_i \leftarrow Z_i \oplus E_K^{1,i}(C'_i)$ **od**
229 **if** $d = 0$ **then** $C_u \leftarrow C_v \leftarrow \varepsilon$; $Y \leftarrow Y_1 \oplus \cdots \oplus Y_m \oplus 0$
230 **else if** $d \le 127$ **then** $C_u \leftarrow M_u \oplus E_K^{-1,4}(S)$; $C_v \leftarrow \varepsilon$; $Y \leftarrow Y_1 \oplus \cdots \oplus Y_m \oplus E_K^{0,4}(C_u 10^*)$
231 **else** $C_u \leftarrow M_u \oplus E_K^{-1,4}(S)$; $C_v \leftarrow M_v \oplus E_K^{-1,5}(S)$; $Y \leftarrow Y_1 \oplus \cdots \oplus Y_m \oplus E_K^{0,4}(C_u) \oplus E_K^{0,5}(C_v 10^*)$ **fi**
232 $C_y \leftarrow S_x \oplus E_K^{-1,2}(S_y)$; $C_x \leftarrow S_y \oplus \Delta \oplus Y \oplus E_K^{0,2}(C_y)$
233 **return** $C_1C'_1 \cdots C_mC'_m C_u C_V C_X C_y$

22		
300	algorithm AEZ-hash (K, T)	// AXU hash. T is a vector of strings
301	$(T_1,\ldots,T_t) \leftarrow T$	22
302	for $i \leftarrow 1$ to t do	100 mil
303	$\ell \leftarrow \max(1, \lceil T_i /128 \rceil); \ j \leftarrow i+2; \ Z_1 \cdots Z_\ell \leftarrow T_i \text{ where } Z_1 =$	$= \dots = Z_{\ell-1} = 128$
304	if $ Z_{\ell} = 128$ then $\Delta_i \leftarrow E_K^{j,1}(Z_1) \oplus \cdots \oplus E_K^{j,\ell}(Z_{\ell})$ fi	
305	if $ Z_{\ell} < 128$ then $\Delta_i \leftarrow \mathrm{E}_K^{j,1}(Z_1) \oplus \cdots \oplus \mathrm{E}_K^{j,\ell-1}(Z_{\ell-1}) \oplus \mathrm{E}_K^{j,0}(Z_{\ell-1})$	$(Z_{\ell}10^*)$ fi
306	return $\Delta_1 \oplus \cdots \oplus \Delta_t \oplus 0$	
310	algorithm AEZ-prf (K, T, τ)	// PRF used when $M = \varepsilon$
311	$\Delta \leftarrow \text{AEZ-hash}(K, T)$	50
312	$\mathbf{return} \; (\mathbf{E}_{K}^{-1,3}(\Delta) \parallel \mathbf{E}_{K}^{-1,3}(\Delta \oplus [1]_{128}) \parallel \mathbf{E}_{K}^{-1,3}(\Delta \oplus [2]_{128}) \parallel \cdots) [$	1 <i>τ</i>]
400	algorithm $E_K^{j,i}(X)$	// Scaled-down TBC
401	$I \parallel J \parallel L \leftarrow \text{Extract}(K) \text{ where } I = J = L = 128$	
402	$\boldsymbol{K} \leftarrow (\boldsymbol{0}, I, J, L, I, J, L, I, J, L, I)$	
403	if $j = -1$ then $\Delta \leftarrow iJ$; return AES10 _K (X \oplus \Delta) fi	
404	$k \leftarrow k_1 \leftarrow (0, J, I, L, 0); \ k_2 \leftarrow (0, L, I, J, L)$	
405	if $j = 0$ then $\Delta \leftarrow iI$; return AES4 _k ($X \oplus \Delta$) fi	
406	if $1 \leq j \leq 2$ then $\Delta \leftarrow (2^{3+\lfloor (i-1)/8 \rfloor} + ((i-1) \mod 8))I$; return	$AES4_{k_i}(X \oplus \Delta)$ fi
407	if $j \ge 3$ and $i = 0$ then $\Delta \leftarrow 2^{j-3} \cdot L$; return $AES4_k(X \oplus \Delta)$	
408	if $j \ge 3$ and $i \ge 1$ then $\Delta \leftarrow 2^{j-3} \cdot L \oplus (2^{3+\lfloor (i-1)/8 \rfloor} + (i-1 \mod 2^{j-3}))$	8)) J ; return $AES4_k(X \oplus \Delta) \oplus \Delta$ fi
410	algorithm $Extract(K)$	// Map key to subkeys
411	if $ K = 384$ then return K	36.005 64 5.006 962.1
412	else return $BLAKE2b(K)$	

