Exact Security Analysis of Hash-then-Mask Type Probabilistic MAC Constructions

Avijit Dutta and Ashwin Jha and Mridul Nandi

Indian Statistical Institute, Kolkata

27th September, 2016

/□ ▶ < □ ▶ < □

Outline of the talk

- Message Authentication Code.
- e HtM Construction.
- Ontributions.
- Onclusion

A B > A B >

MAC (Stateless and Deterministic): The Popular Story

• Alice and Bob share a secret key K.

→ 3 → < 3</p>

MAC (Stateless and Deterministic): The Popular Story

- Alice and Bob share a secret key K.
- Alice sends a message M with a tag $T = MAC_K(M)$ corresponding to the message M to Bob.

MAC (Stateless and Deterministic): The Popular Story

- Alice and Bob share a secret key K.
- Alice sends a message M with a tag T = MAC_K(M) corresponding to the message M to Bob.
- Solution Data Integrity: Bob verifies the sender and the message by computing $VER_{\kappa}(M, T) = 1$.

伺 ト イ ヨ ト イ ヨ ト

MAC (Stateless and Deterministic): The Popular Story

- Alice and Bob share a secret key K.
- Alice sends a message M with a tag $T = MAC_K(M)$ corresponding to the message M to Bob.
- Data Integrity: Bob verifies the sender and the message by computing $VER_{\kappa}(M, T) = 1$.

Unforgeability

- Adversary asks for tags for queries of his choice.
- Goal is to generate any fresh, valid (message, tag) pair.

Security Requirement: It should be HARD

- 4 周 ト 4 月 ト 4 月

MAC (Stateful or Probabilistic): The Popular Story

- Alice sends a message M, an auxiliary variable IV with a tag $T = MAC_{K}(M, IV)$ corresponding to the message M and IV to Bob.
- Data Integrity: Bob verifies the sender and the message by computing $VER_{K}(M, IV, T) = 1$.

<u>Stateful MAC</u> : When *IV* is a counter / nonce. (e.g XMACC, PCS) <u>Probabilistic MAC</u> : When *IV* is random. (e.g XMACR, EHtM)

Unforgeability

- Adversary asks for T for queries M (Signing Query).
- Adversary asks fresh (M, IV, T) triplet and obtains 1 or 0.
 Succeed if the response is 1 (Verification Query).

Security: Should be HARD to obtain response 1

Pseudo Random Function (PRF)

PRF

Keyed function which is indistinguishable from a Random Function (RF)

Indistinguishability

- Responses of adversary queries are given either using the function or a RF.
- Goal is to distinguish the function from a RF.

Security Requirement: It should be HARD

- 4 同 🕨 - 4 目 🕨 - 4 目

Universal and AXU-Hash

Universal Hash

H is a n bit Universal Hash, if <u>for all distinct values</u>, the collision probability of H is negligible.

Almost-XOR-Universal Hash

H is a *n* bit AXU Hash, if for all distinct values x, x' and for all *y*, $Pr[H(x) \oplus H(x') = y]$ is negligible.

同 ト イ ヨ ト イ ヨ ト

Existing Result on Probablistic MAC

Candidate	Construction	Rand	Eff.	Bound
XMACR[BGR'95]	$(r, H(m) \oplus f(r))$	n	$1H_{xu}, 1F[n, n]$	$O(rac{q^2}{2^n}+q_v\epsilon)$
MACRX ₃ [BGK'99]	$(r_1, r_2, r_3,$	3 <i>n</i>	1 <i>H</i> _{xu} , 3 <i>F</i> [<i>n</i> , <i>n</i>]	$O(rac{q^3}{2^{3n}}+q_{ m v}\epsilon)$
	$\bigoplus_{i=1}^{3} f(r_i) \oplus H(m))$			-
RMAC[JJV'02]	$(r, f_2^r(CBC_{f_1}(m)))$	n	$(\ell+1)P[n]$	$O(\frac{\ell(q+q_v)}{2^n})$
FRMAC[JJ'04]	$(r,\pi_r(H(m)))$	n	$1H_{\rm u}, 1P[n, n]$	$O(\ell(q+q_v)\epsilon)$
RWMAC[M'10]	(r,g(r,H(m)))	п	$1H_{u}, 1F[2n, n]$	$O(rac{q^2\epsilon}{2^n}+q_{ m v}\epsilon)$
EHtM[M'10]	$(r, f(r) \oplus g(r \oplus H(m))$	n	$1H_{xu}, 2F[n, n]$	$O(rac{q^3\epsilon}{2^n}+q_{ m v}\epsilon)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

HtM: Probabilistic MAC

A.Dutta Exact Security Analysis of HtM Construction

Attack Idea Proof Idea

Our Contribution

- Tight PRF, <u>pPRF</u> and MAC Security Analysis of Different Types of HtM Constructions.
- An Impossibility Result on Probabilistic MAC: Unlike deterministic MAC, in probabilistic MAC, there is no such ideal system, indistinguishable to which, ensures forging advantage.

	C1	C2	C3	C4	C5	C6	
PRF	X	X	X	X	X	$\Theta(2^{n/2})$	
pPRF	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{3n}{4}})$	$\Theta(2^{\frac{3n}{4}})$	
MAC	X	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{n}{2}})$	$\Theta(2^{\frac{2n}{3}})$	$\Theta(2^{\frac{3n}{4}})$	
	A Dutta Exact Security Analysis of HtM Construction						

Attack Idea Proof Idea

PRF Attack Idea of C1,C2,C3,C4

 $\mathsf{SUM}_{\mathrm{f},\mathrm{g}}(r,y) = f(r) \oplus g(y)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Attack Idea Proof Idea

PRF Attack Idea of C1,C2,C3,C4

$$\mathsf{SUM}_{\mathrm{f},\mathrm{g}}(r,y) = f(r) \oplus g(y)$$

Alternating Cycle (Alt-Cycle)

- For an Alt-Cycle C, $\sum_{i=1}^{4} \text{SUM}_{f,g}^{C}(r_i, y_i) = 0$ (distinguishing event)
- For C1, C2 : g is identity function.
- For C1, C3 : y is m; For C2, C4 : y is H(m); For C5 : y is r + m

Attack Idea Proof Idea

PRF Attack Idea of C5 and C6

Attack Algorithm C5 : $f(r) \oplus \overline{g(r \oplus m)}$

- Choose $(r_1, m_1), (r_2, m_2)$ s.t $r_1 + m_1 = r_2 + m_2$
- Query Phase : $t_1 \leftarrow (r_1, m_1), t_2 \leftarrow (r_2, m_2), t_3 \leftarrow (r_1, m_2), t_4 \leftarrow (r_2, m_1)$
- Distinguishing Event : If $\bigoplus_{i=1}^{4} t_i = 0$, return 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Attack Idea Proof Idea

PRF Attack Idea of C5 and C6

Attack Algorithm C5 : $f(r) \oplus g(r \oplus m)$

- Choose $(r_1, m_1), (r_2, m_2)$ s.t $r_1 + m_1 = r_2 + m_2$
- Query Phase : $t_1 \leftarrow (r_1, m_1), t_2 \leftarrow (r_2, m_2), t_3 \leftarrow (r_1, m_2), t_4 \leftarrow (r_2, m_1)$
- Distinguishing Event : If $\bigoplus_{i=1}^{\tau} t_i = 0$, return 1.

Attack Algorithm C6 : $f(r) \oplus g(r \oplus H(m))$

• Query Phase :

$$t_1 \leftarrow (r, m_1), t_2 \leftarrow (r, m_2), \dots, t_{2^{n/2}} \leftarrow (r, m_{2^{n/2}})$$

- If $H(m_i) = H(m_j)$, query $t'_i \leftarrow (r', m_i), t'_j \leftarrow (r', m_j)$, output 1 if $t'_i = t'_j$
- Else, collision in g.

Attack Idea Proof Idea

Probabilistic PRF (pPRF)

Definition and Security Game

Keyed function that takes two inputs (r, M) is indistinguishable from RF

- Adversary can only query the oracle with *M*.
- Goal is to <u>distinguish</u> the function from a RF; secure if it is hard

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

Probabilistic PRF (pPRF)

Definition and Security Game

Keyed function that takes two inputs (r, M) is indistinguishable from RF

- Adversary can only query the oracle with *M*.
- Goal is to <u>distinguish</u> the function from a RF; secure if it is hard

pPRF Attack Algorithm of C1 : $f(r) \oplus m$

- Query Phase : $t_1 \leftarrow m_1, t_2 \leftarrow m_1, \ldots, t_{2^{n/2}} \leftarrow m_1$
- W.h.p $\exists i, j \in \{1, 2, \dots, 2^{n/2}\}$ s.t $r_i = r_j$
- If $t_i = t_j$, return 1.

- 4 同 2 4 日 2 4 日 2

Attack Idea Proof Idea

Probabilistic PRF (pPRF)

Definition and Security Game

Keyed function that takes two inputs (r, M) is indistinguishable from RF

- Adversary can only query the oracle with *M*.
- Goal is to <u>distinguish</u> the function from a RF; secure if it is hard

pPRF Attack Algorithm of C1 : $f(r) \oplus m$

- Query Phase : $t_1 \leftarrow m_1, t_2 \leftarrow m_1, \ldots, t_{2^{n/2}} \leftarrow m_1$
- W.h.p $\exists i, j \in \{1, 2, \dots, 2^{n/2}\}$ s.t $r_i = r_j$
- If $t_i = t_j$, return 1.

pPRF Attack for C2, C3, C4 is same as that of C1

Attack Idea Proof Idea

pPRF Attack Idea of C5

Figure 0.1: Distinguishing Event : If $t_i \oplus t_j \oplus t_k \oplus t_l = 0$, output 1.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

pPRF Attack Idea of C6

Figure 0.1: Distinguishing Event : If $t_i \oplus t_j \oplus t_k \oplus t_l = 0$, output 1.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

Forging Idea of C1-C6

Forging C1 : $f(r) \oplus m$

- Query Phase : $t \leftarrow (r, m)$.
- Forge : $(r, m \oplus \delta, t \oplus \delta)$.

(日) (同) (日) (日) (日)

Attack Idea Proof Idea

Forging Idea of C1-C6

Forging C1 : $f(r) \oplus m$

- Query Phase : $t \leftarrow (r, m)$.
- Forge : $(r, m \oplus \delta, t \oplus \delta)$.

Forging C2 : $f(r) \oplus H(m)$

• Query Phase :

$$t_1 \leftarrow (r_1, m_1), t_2 \leftarrow (r_2, m_2), \ldots, t_{2^{n/2}} \leftarrow (r_{2^{n/2}}, m_{2^{n/2}})$$

- W.h.p $i, j \in \{1, 2, \dots, 2^{n/2}\}$ such that $r_i = r_j$. It leaks $H(m_i) \oplus H(m_j) = \delta$.
- Query $t \leftarrow (r, m_i)$.
- Forge : $(r, m_j, t \oplus \delta)$.

- 4 同 6 4 日 6 4 日 6

Attack Idea Proof Idea

Forging Idea of C1-C6

Forging C1 : $f(r) \oplus m$

- Query Phase : $t \leftarrow (r, m)$.
- Forge : $(r, m \oplus \delta, t \oplus \delta)$.

Forging C2 : $f(r) \oplus H(m)$

• Query Phase :

$$t_1 \leftarrow (r_1, m_1), t_2 \leftarrow (r_2, m_2), \ldots, t_{2^{n/2}} \leftarrow (r_{2^{n/2}}, m_{2^{n/2}})$$

- W.h.p $i, j \in \{1, 2, \dots, 2^{n/2}\}$ such that $r_i = r_j$. It leaks $H(m_i) \oplus H(m_j) = \delta$.
- Query $t \leftarrow (r, m_i)$.
- Forge : $(r, m_j, t \oplus \delta)$.

Forging attack of C3, C4 is same as that of C2, \sim

Attack Idea Proof Idea

Forging Idea of C5

(日) (同) (三) (三)

Attack Idea Proof Idea

Forging Idea of C6

(日) (同) (三) (三)

Attack Idea Proof Idea

Alternating Cycle

A transcript $\tau := \{(x_1, y_1), (x_2, y_2), \dots, (x_q, y_q)\}$ has an alternating-cycle in τ of length k (k is even and ≥ 2), if we have k pairwise distinct indices i_1, i_2, \dots, i_k such that $x_{i_1} = x_{i_2}, y_{i_2} = y_{i_3}, x_{i_3} = x_{i_4}, \dots, x_{i_{k-1}} = x_{i_k}, y_{i_k} = y_{i_1}.$

- 4 同 2 4 回 2 4 U

Attack Idea Proof Idea

Alternating Cycle

A transcript $\tau := \{(x_1, y_1), (x_2, y_2), \dots, (x_q, y_q)\}$ has an alternating-cycle in τ of length k (k is even and ≥ 2), if we have k pairwise distinct indices i_1, i_2, \dots, i_k such that

 $x_{i_1} = x_{i_2}, y_{i_2} = y_{i_3}, x_{i_3} = x_{i_4}, \dots, x_{i_{k_1}} = x_{i_k}, y_{i_k} = y_{i_1}.$

Figure: Alternating Cycle of length 4. Red line indicates first coordinate matches. Green line indicates second coordinates matches

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Attack Idea Proof Idea

Benes Butterfly Result

Theorem (Benes-Butterfly (AV'96))

Let f and g be two n-bit independent and uniformly distributed random functions. Let us consider a transcript $\tau = \{(x_i, y_i, t_i)_{1 \le i \le q}\}$ which does not contain any alternating cycle. Then

$$\Pr[f(x_i) \oplus g(y_i) = t_i, 1 \le i \le q] = \frac{1}{2^{nq}}.$$

Proof Sketch : If there is no alternating cycle in $\tau = \{(x_i, y_i)_{1 \le i \le q}\}$ then from each of q many equations, we get at least one uniform random variable

・ロト ・同ト ・ヨト ・ヨト

Attack Idea Proof Idea

pPRF Advantage of C5 and C6

Theorem

$$\mathsf{Adv}^{\mathrm{pprf}}_{\mathrm{C5/C6}}(q,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q,t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q,t) + \tfrac{q^4}{2^{3n}}.$$

<ロト <問 > < 注 > < 注 >

Attack Idea Proof Idea

pPRF Advantage of C5 and C6

Theorem

$$\mathsf{Adv}^{\mathrm{pprf}}_{\mathrm{C5/C6}}(q,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q,t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q,t) + rac{q^4}{2^{3n}}.$$

• Bad Transcript : Alternating cycle on $(r, r \oplus m)/(r, r \oplus h(m))$.

(日) (同) (三) (三)

Attack Idea Proof Idea

pPRF Advantage of C5 and C6

Theorem

$$\mathsf{Adv}^{\mathrm{pprf}}_{\mathrm{C5/C6}}(q,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q,t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q,t) + rac{q^4}{2^{3n}}.$$

- Bad Transcript : Alternating cycle on $(r, r \oplus m)/(r, r \oplus h(m))$.
- No bad event \Rightarrow No alternating cycle in the transcript.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Attack Idea Proof Idea

pPRF Advantage of C5 and C6

Theorem

$$\mathsf{Adv}^{\mathrm{pprf}}_{\mathrm{C5/C6}}(q,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q,t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q,t) + rac{q^4}{2^{3n}}.$$

- Bad Transcript : Alternating cycle on $(r, r \oplus m)/(r, r \oplus h(m))$.
- \bullet No bad event \Rightarrow No alternating cycle in the transcript.
- Probability of bad event : $\frac{q^4}{2^{3n}}$

| 4 同 1 4 三 1 4 三 1

Attack Idea Proof Idea

SUF Advantage of C5 and C6

Theorem (SUF Advantage of C5)

$$\mathsf{Adv}^{ ext{suf}}_{\mathcal{C}_5}(q,q',t) \leq \mathsf{Adv}^{ ext{prf}}_{f_{k_1}}(q+q',t) + \mathsf{Adv}^{ ext{prf}}_{f_{k_2}}(q+q',t) + rac{q^3}{2^{2n}} + rac{q'}{2^n}.$$

(日) (同) (三) (三)

Attack Idea Proof Idea

SUF Advantage of C5 and C6

Theorem (SUF Advantage of C5)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathcal{C}_5}(q,q',t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t) + rac{q^3}{2^{2n}} + rac{q'}{2^{n}}.$$

• Bad Transcript : Alternating cycle on $(r, r \oplus m)$ after making signing and vertication queries.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Attack Idea Proof Idea

SUF Advantage of C5 and C6

Theorem (SUF Advantage of C5)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathcal{C}_5}(q,q',t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t) + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t) + rac{q^3}{2^{2n}} + rac{q'}{2^{n}}.$$

• Bad Transcript : Alternating cycle on $(r, r \oplus m)$ after making signing and verifcation queries.

- \bullet Good Transcript \Rightarrow No Alternating Cycle in the transcript.
- Probability of Bad Transcript : $\frac{q^3}{2^{2n}}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

Proof Idea of SUF Advantage of C5 and C6

Theorem (SUF Advantage of C6)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathrm{C6}}(q,q',\ell,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t') + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t') + \frac{q^4}{2^{3n}} + \frac{10q'}{2^n},$$

where $t = t' + O(qT_h)$

< 日 > < 同 > < 三 > < 三 >

Attack Idea Proof Idea

Proof Idea of SUF Advantage of C5 and C6

Theorem (SUF Advantage of C6)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathrm{C6}}(q,q',\ell,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t') + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t') + \frac{q^4}{2^{3n}} + \frac{10q'}{2^n},$$

where $t = t' + O(qT_h)$

• Bad Transcript : Alternating cycle on $(r, r \oplus h(m))$ after making signing and vertication queries.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

Proof Idea of SUF Advantage of C5 and C6

Theorem (SUF Advantage of C6)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathrm{C6}}(q,q',\ell,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t') + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t') + \frac{q^4}{2^{3n}} + \frac{10q'}{2^n},$$

where $t = t' + O(qT_h)$

- Bad Transcript : Alternating cycle on $(r, r \oplus h(m))$ after making signing and vertication queries.
- Good Transcript \Rightarrow No Alternating cycle.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Attack Idea Proof Idea

Proof Idea of SUF Advantage of C5 and C6

Theorem (SUF Advantage of C6)

$$\mathsf{Adv}^{\mathrm{suf}}_{\mathrm{C6}}(q,q',\ell,t) \leq \mathsf{Adv}^{\mathrm{prf}}_{f_{k_1}}(q+q',t') + \mathsf{Adv}^{\mathrm{prf}}_{f_{k_2}}(q+q',t') + \frac{q^4}{2^{3n}} + \frac{10q'}{2^n},$$

where $t = t' + O(qT_h)$

- Bad Transcript : Alternating cycle on $(r, r \oplus h(m))$ after making signing and vertication queries.
- Good Transcript \Rightarrow No Alternating cycle.
- Probability of Bad Transcript : $\frac{q^4}{2^{3n}}$ as (we need one more point)

(同) (ヨ) (ヨ)

Summary

- Tight Security Analysis of HtM Probabilistic MAC.
- Tight Security Analysis of EHtM.
- Impossibility result on Probabilistic MAC.

伺 ト イヨ ト イヨ

Summary

- Tight Security Analysis of HtM Probabilistic MAC.
- Tight Security Analysis of EHtM.
- Impossibility result on Probabilistic MAC.

Thank You

/□ ▶ < 글 ▶ < 글