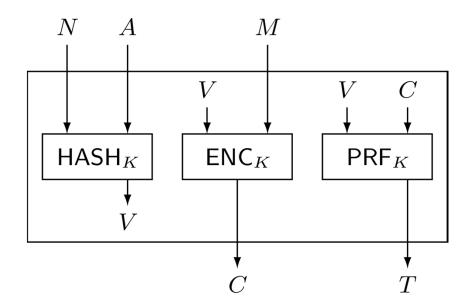
Updates on CLOC and SILC Version 3

Tetsu Iwata*, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi

DIAC 2016 September 26, 2016, Nagoya, Japan

^{*} Supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045

Outline

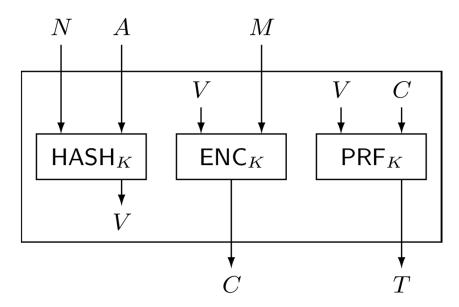

- Review of the schemes
 - Specification of CLOC and SILC, security, implementation
- Updates from version 2 to version 3
- Discussion
- Future plan

CLOC and SILC

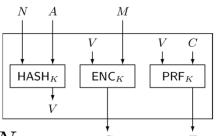
- CLOC [1]
 - Compact Low-Overhead CFB, FSE 2014
 - Suitable for handling short input data on small microprocessors
- SILC [2]
 - SImple Lightweight CFB, DIAC 2014
 - Hardware oriented version of CLOC

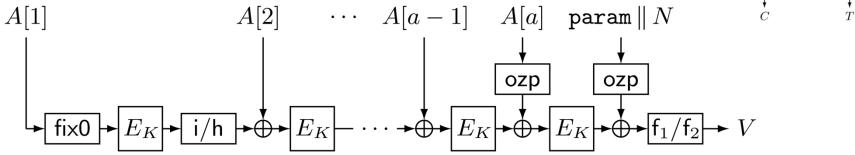
Overview of CLOC and SILC

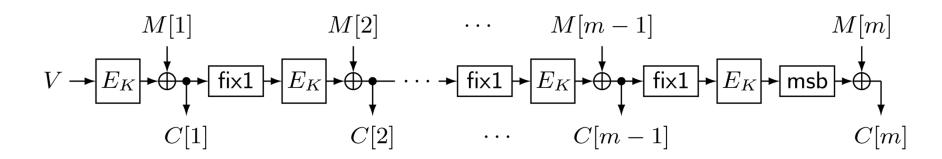
- HASH and PRF: variants of CBC-MAC
- ENC: variant of CFB encryption mode

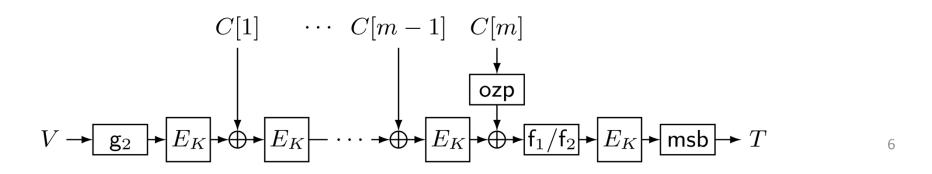


Parameters of CLOC and SILC

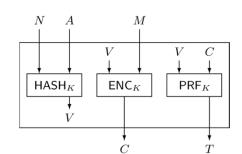

• *E*: blockcipher

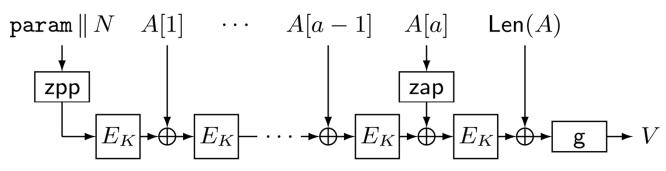

• l_N : nonce length


• τ : tag length

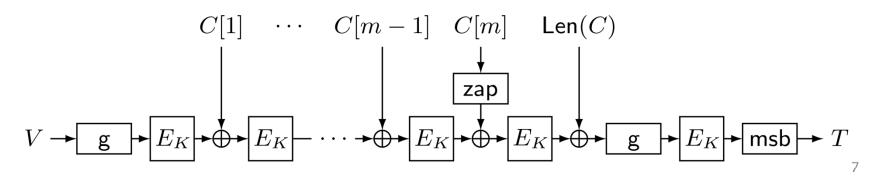


CLOC v3









SILC v3

Security of CLOC and SILC

- CLOC and SILC are provably secure up to the standard birthday bound
 - Privacy: against nonce-respecting adversaries
 - Authenticity: against nonce-reusing adversaries
 - $O(\sigma^2/2^n)$, σ is the number of total blocks, n is the block length in bits

Implementation

- A: associated data of a blocks
- M: a plaintext of m blocks
- CLOC
 - -1 + a + 2m blockcipher calls when $|A| \ge 1$
 - -2 + 2m calls when |A| = 0
 - No precomputation beyond the blockcipher key schedule
- SILC
 - -3 + a + 2m blockcipher calls
 - No precomputation beyond the blockcipher key schedule

Software Implementation

- CLOC and SILC with AES (from DIAC 2015)
 - Intel (R) Core (TM) i5-4570 3.20GHz (Haswell family), AES-128, AES-NI
 - CLOC and SILC run at 4.56 cpb
 - seral AES runs at 4.44 cpb, very close to the speed of seral AES
- Latest performance at public benchmark (SUPERCOP)
 - Intel (R) Core (TM) i5-6600 (Skylake) :
 - 2.82 cpb for long messages, 7.81 cpb for 64-byte messages

Software Implementation

- Intel (R) Core (TM) i5-4570 3.20GHz (Haswell family), long messages (2048 bytes), vperm (vector permutation)
 - [update] CLOC with TWINE runs at 14.6 cpb
 - SILC with Present runs at about 70 cpb
 - SILC with LED runs at about 130 cpb
- CLOC Implementations on Atmel AVR ATmega128 (FSE 2014)
 - 8-bit microprocessor
 - the RAM usage is low and Init is fast, and it is fast for short input data, up to around 128 bytes

Hardware Implementation (from DIAC 2015)

- ASIC implementation
 - reference implementation (non-optimized, encryptionand-decryption implemented)
 - Environment: 90nm standard cell library with logic synthesis done by Synopsys DC Version D-2010.03-SP1-1

CLOC

AES		TWINE		
AES128_CLOC	18991.5	TWINE80_CLOC	5917.8	
AES Core	10207.8	TWINE Core	1459.5	
ratio	1.9	ratio	4.1	

in GE (Gate Equivalent)

Hardware Implementation (from DIAC 2015)

- ASIC implementation
 - reference implementation (non-optimized, encryptionand-decryption implemented)
 - Environment: 90nm standard cell library with logic synthesis done by Synopsys DC Version D-2010.03-SP1-1

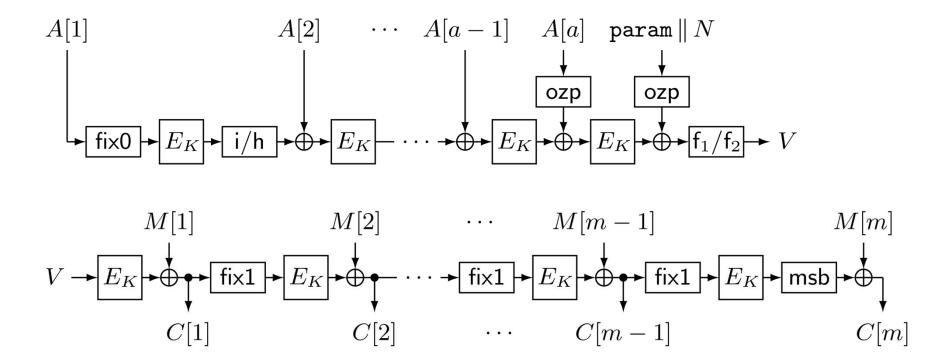
• SILC

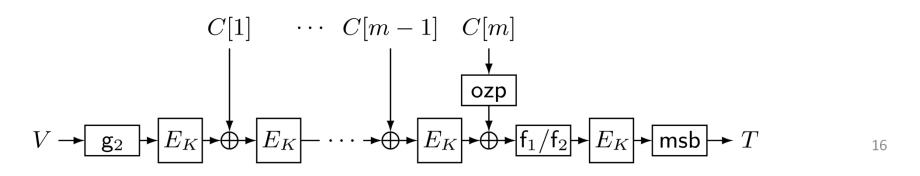
AES		TWINE		PRESENT		
AES128_SILC	17466.0	TWINE80_SILC	5178.0	PRESENT80_CLOC	5532.3	
AES Core	10207.8	TWINE Core	1459.5	PRESENT Core	1817.3	
ratio	1.7	ratio	3.5	ratio	3.0	

in GE (Gate Equivalent)

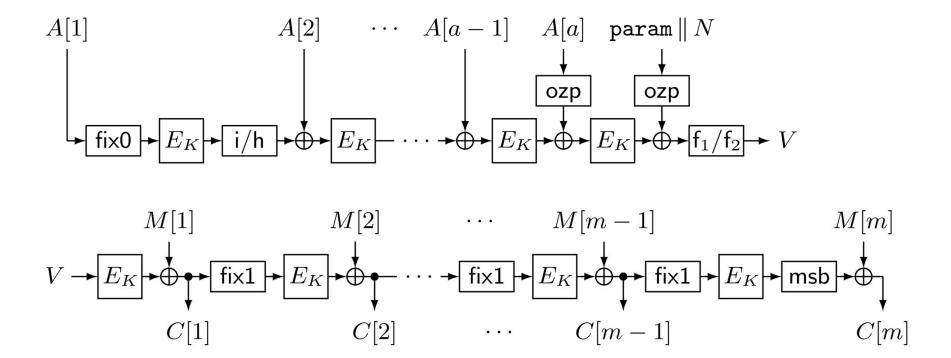
Hardware Implementation

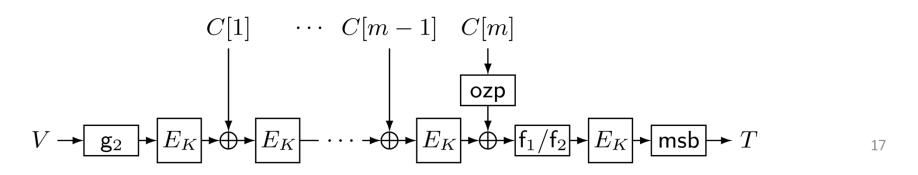
 Area optimized ASIC implementation with dedicated API [Banik, Bogdanov, Minematsu, DIAC 2015]


	Design	Area (μm^2)	Area (GE)
AES128_CLOC	Aggressive	13672.8	3107
AES128_CLOC	Conservative	18966.5	4311
AES128_SILC	Aggressive	13678.3	3109
AES128_SILC	Conservative	18100.0	4114


Reference implementations were submitted to ATHENa

Outline


- Review of the schemes
 - Specification of CLOC and SILC, security, implementation
- Updates from version 2 to version 3
- Discussion
- Future plan


CLOC v2

CLOC v3

Updates from Version 2 to 3

- No changes in specifications (both for CLOC and SILC)
- Two submission documents, "CLOC v2" and "SILC v2," were merged into one submission "CLOC and SILC v3"
 - following the request by CAESAR
- Recommended parameter sets
 - 3 in "CLOC v2"aes128n12t8clocv2, aes128n8t8clocv2, twine80n6t4clocv2
 - 4 in "SILC v2"
 aes128n12t8silcv2, aes128n8t8silcv2, present80n6t4silcv2,
 led80n6t4silcv2
 - -3 + 4 = 7 -> 5 in "CLOC and SILC v3"

Updates from Version 2 to 3

- 5 recommended parameter sets for "CLOC and SILC v3"
- specified the ordering:
 - 1. aes128n12t8clocv3
 - 2. aes128n12t8silcv3
 - 3. twine80n6t4clocv3
 - 4. present80n6t4silcv3
 - 5. led80n6t4silcv3
- dropped aes128n8t8clocv2 and aes128n8t8silcv2

Updates from Version 2 to 3

- CAESAR Use Cases:
 - Use Case 1: Lightweight applications
 - Use Case 2: High-performance applications
 - Use Case 3: Defense in depth
- Targeted use cases of 5 recommended parameter sets
 - 1. aes128n12t8clocv3 Use Case 1
 - 2. aes128n12t8silcv3 Use Case 1
 - 3. twine80n6t4clocv3 Use Case 1
 - 4. present80n6t4silcv3 Use Case 1
 - 5. led80n6t4silcv3 Use Case 1
- CLOC and SILC have some features of Use Case 3, but this is not a targeted use case

Other Updates

- n=96 is listed as a possible choice of the block length of the underlying blockcipher
- added Simon and Speck as possible options

Outline

- Review of the schemes
 - Specification of CLOC and SILC, security, implementation
- Updates from version 2 to version 3
- Discussion
- Future plan

History: CCM, EAX, and EAX-prime

- CCM (NIST SP 800-38C)
 - complex specification, not online, a number of limitations were pointed out [3]
- EAX (ISO/IEC 19772)
 - simple design, AES-CMAC plus AES-CTR
 - provably secure
 - precomputation cost $(E_K(0), E_K(1), and E_K(2))$ can be an issue for highly constrained devices; time and memory

History: CCM, EAX, and EAX-prime

- EAX-prime (ANSI C12.22)
 - reduces precomputation complexity of EAX
 - efficiently handles short input data with small memory
 - was not proposed with a proof of security
 - standardized by ANSI for Smartgrid
 - ANSI pushed EAX-prime to NIST, and NIST requested public comments for inclusion of it into NIST SP-800 series
 - EAX-prime was seriously broken [4]
 - single-query forgery etc.
 - was not adopted in the NIST standard

From CCM, EAX, and EAX-prime to CLOC and SILC

- There is a public need for a scheme like CCM, EAX, and EAXprime:
 - constrained devices, blockcipher-based, design simplicity, small footprint
 - low memory requirement, low precomputation complexity, and provable security
- CCM -> EAX -> EAX-prime -> CLOC and SILC
 - catch "the public need"

64-bit blockciphers

- 64-bit blockciphers are in use:
 - TDES, Kasumi, Present,...
- Many new designs for lightweight applications
 - LED, TWINE, Prince, Midori, Rectangle,...
- a blockcipher cannot be used by itself
 - encryption mode, MAC for authentication, AE mode
 - in modes, block length matters, not for general purpose applications
 - for low-powered, small-bandwidth, or limited-lifetime communications

64-bit blockciphers

- showing "the right way" of using 64-bit blockciphers to the outside world is important
 - Generic composition works
 - CCM and GCM are for 128-bit blockciphers
 - there is a 64-bit block version of GCM
 - CLOC and SILC give one right way

Outline

- Review of the schemes
 - Specification of CLOC and SILC, security, implementation
- Updates from version 2 to version 3
- Discussion
- Future plan

Future Plan

- Future plan (from DIAC 2015, still in progress):
 - Analysis of CLOC and SILC in terms of INT-RUP security
 - Designing a variant of SILC for empty associated data

Thank you

- Review of the schemes
 - Specification of CLOC and SILC, security, implementation
- Updates from version 2 to version 3
- Discussion
- Future plan
- Web site:
 - http://www.nuee.nagoya-u.ac.jp/labs/tiwata/AE/
 - documents, slides, test vectors