Authenticated Encryption with Variable Stretch

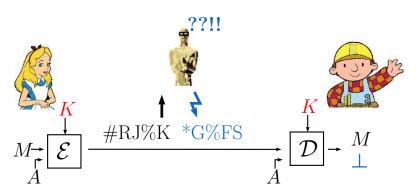
Reza Reyhanitabar¹ Serge Vaudenay² <u>Damian Vizár</u>²

¹ NEC Laboratories Europe, Germany ² EPFL, Switzerland

DIAC 2016: Directions in Authenticated Ciphers 2016

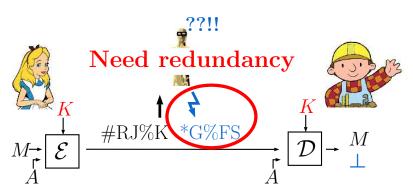
This work was partially supported by Microsoft Research

Authenticated Encryption



- Confidentiality+Authenticity/Integrity for M
 - [Bellare,Namprempre 00],[Katz,Yung 00]
- ► Authenticity for A [Rogaway 02]

Authenticated Encryption

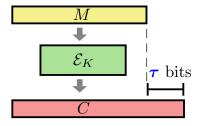


- ► Confidentiality+Authenticity/Integrity for M
 - [Bellare,Namprempre 00],[Katz,Yung 00]
- ► Authenticity for A [Rogaway 02]

Ciphertext Epxansion

a.k.a. Stretch

Redundancy in AE: ciphertext expansion



Ciphertext expanded by τ bits

 \Rightarrow Expected cost of forgery: \approx 2^{au} queries

How to Stretch?

w.r.t. the Syntax of Security Notions

- Group 1: (Mostly) constant τ , parameter of the scheme
 - nAE [Rogaway, Bellare, Black, Krovetz 01]
 - AEAD [Rogaway 02]
 - DAE and MRAE [Rogaway, Shrimpton 06]
 - OAE [Fleischmann, Forler, Lucks 12]
 - **AE-RUP** [Andreeva, Bogdanov, Luykx, Mennink, Mouha, Yasuda 14]
 - OAE2 [Hoang, Reyhanitabar, Rogaway, V 15]

- Group 2: User-selectable τ per query
 - RAE [Hoang, Krovetz, Rogaway 15]

How to Stretch?

w.r.t. the Syntax of Security Notions

• Group 1: (Mostly) constant τ , parameter of the scheme

- nAE [Rogaway, Bellare, Black, Krovetz 01]
- AEAD [Rogaway 02]
- DAE and MRAE [Rogaway, Shrimpton 06]
- OAE [Fleischmann, Forler, Lucks 12]
- AE-RUP [Andreeva, Bogdanov, Luykx, Mennink, Mouha, Yasuda 14]
- OAE2 [Hoang, Reyhanitabar, Rogaway, V 15]
- ▶ Different tag lengths ⇒ independent keys

• Group 2: User-selectable au per query

- RAE [Hoang, Krovetz, Rogaway 15]
- ▶ "Best possible security", hard to achieve
- Cannot be "online"
- Complicated, difficult to implement

- Group 1: Constant τ , parameter of the scheme
 - nAE
 - AEAD
 - DAE and MRAE
 - OAE
 - AE-RUP
 - OAE2

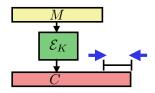
- Group 1: Constant τ , parameter of the scheme
 - nAE
 - AEAD
 - DAE and MRAE
 - OAE
 - AE-RUP
 - OAE2

What happens if stretch is (mis)treated as a user input?

Why Should we Consider It?

Because it is tempting:

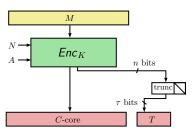
- Handling multiple keys is annoying
- "Sliding-scale" authenticity as a feature
 - (τ bits of stretch $\Rightarrow \tau$ bits of authenticity for individual messages)
 - **E.g.** moderate τ_1 for most messages and huge τ_2 for critical
- Saving resources in constrained systems
 - E.g. sensor nodes: wireless communication is expensive
 - Reducing security to increase battery life (key exchange way too expensive)



Why Should we Consider It?

Because it is easy to do:

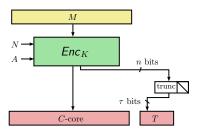
Most often: a default authentication tag that is truncated



Why Should we Consider It?

Because it is easy to do:

Most often: a default authentication tag that is truncated



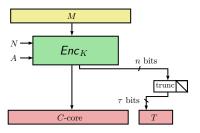
Because it is a matter of "when", not "if" a misuse occurs

• Past examples of this for other misuses

Why Should we Consider It?

Because it is easy to do:

Most often: a default authentication tag that is truncated

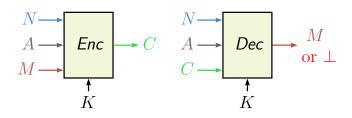


Because it is a matter of "when", not "if" a misuse occurs

Past examples of this for other misuses

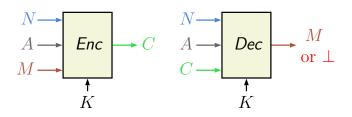
... and because there are attacks

Nonce-based AE with Associated Data (AEAD)



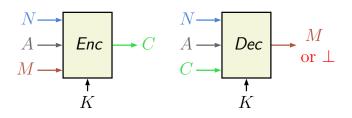
- Enc, Dec: deterministic algorithms
- N: Nonce (public message number) that must not repeat
- A: Associated Data that must be authenticated, but not encrypted
- M: Plaintext that must be encrypted and authenticated
- C: Ciphertext (stretched by τ bits)
- K: Secret key

Nonce-based AE with Associated Data (AEAD)



- Enc, Dec: deterministic algorithms
- N: Nonce (public message number) that must not repeat
- A: Associated Data that must be authenticated, but not encrypted
- M: Plaintext that must be encrypted and authenticated
- C: Ciphertext (stretched by τ bits)
- K: Secret key

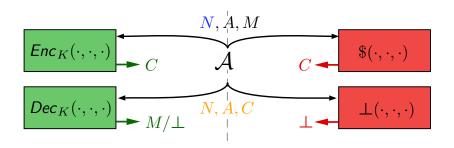
Nonce-based AE with Associated Data (AEAD)



- Enc, Dec: deterministic algorithms
- N: Nonce (public message number) that must not repeat
- A: Associated Data that must be authenticated, but not encrypted
- M: Plaintext that must be encrypted and authenticated
- C: Ciphertext (stretched by τ bits)
- K: Secret key

Nonce-based AE with Associated Data

N never repeats, (N, A, C) not trivially correct:

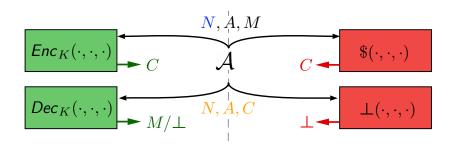


$$\mathbf{Adv}_{\Pi}^{\mathit{aead}}(\mathcal{A}) = \mathsf{Pr}\left[\mathcal{A}^{\mathit{Enc}_{\mathcal{K}}(\cdot,\cdot,\cdot),\mathit{Dec}_{\mathcal{K}}(\cdot,\cdot,\cdot)} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathcal{A}^{\$(\cdot,\cdot,\cdot),\perp(\cdot,\cdot,\cdot)} \Rightarrow 1\right]$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 8 / 22

Nonce-based AE with Associated Data

N never repeats, (N, A, C) not trivially correct:



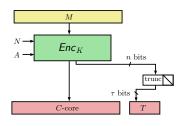
... and the ciphertext expansion is assumed to be constant

$$\mathbf{Adv}^{\mathit{aead}}_\Pi(\mathcal{A}) = \text{Pr}\left[\mathcal{A}^{\mathit{Enc}_K(\cdot,\cdot,\cdot),\mathit{Dec}_K(\cdot,\cdot,\cdot)} \Rightarrow 1\right] - \text{Pr}\left[\mathcal{A}^{\$(\cdot,\cdot,\cdot),\perp(\cdot,\cdot,\cdot)} \Rightarrow 1\right]$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 8 / 22

Trivial Tag Length-Variation Attack on AEAD

"Versions of OCB with different tag lengths exist, tag truncation trivially correct if used under same key" [Manger 13, CFRG discussion]



- Query $C||T \leftarrow OCB[128]_K(N, A, M)$ for target (N, A, M)
- **2** Compute $T' \leftarrow \text{trunc}(T, 64)$
- § "Forge" $C \parallel T' \leftarrow \mathsf{OCB}[64]_K^{-1}(N, A, C \parallel T')$

9/22

Obvious property, but . . .

 \dots contradicts the intuition of τ -bit resistance to forgery

Trivial Tag Length-Variation Attack on AEAD

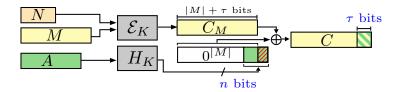
"Would it be better if the algorithms with different tag lengths could not affect each other?"

Probably! Ad-hoc solutions proposed:

- OCB adopts fix proposed by Manger: "just drop the tag length into the nonce"
- Nandi proposes to do the same with AD
- CLOC&SILC, OTR and OMD heuristically tweaked for round 2 of CAESAR competition

Ciphertext Translation

Message-only core + AD-"hash"

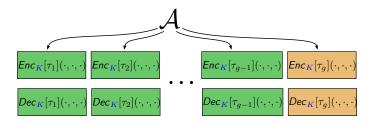


- message-ciphertext already "looks random"
- H_K can be AXU

The Attack

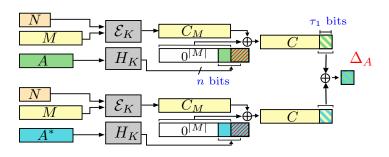
Original attack: gradual forgery on OMD [Dobraunig, Eichlseder, Mendel, Schläffer 14]

- Access to Enc and Dec oracles with stretch $\tau_1 < \tau_2 < \ldots < \tau_g$ using the same key, scheme with ciphertext translation structure
- Forgery for N, A^*, M with τ_a bits of stretch



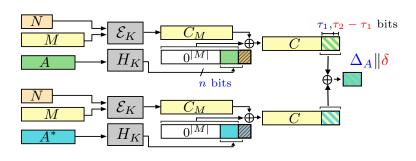
The Attack

- Pick some $\mathbf{A} \neq \mathbf{A}^*$
- ② Get $C||T \leftarrow Enc[\tau_1](N, A, M)$
- **3** Find $\delta \in \{0,1\}^{\tau_1}$ s.t. $Dec[\tau_1](N,A^*,C\|(T \oplus \delta))$ succeeds



The Attack

- **⑤** Get $\mathbf{C} \| \mathbf{T} \leftarrow \mathbf{Enc}[\tau_2](\mathbf{N}, \mathbf{A}, \mathbf{M})$
- $\textbf{ ind } \delta \in \{\textbf{0},\textbf{1}\}^{\tau_2-\tau_1} \text{ s.t. } \textbf{Dec}[\tau_g](\textbf{N},\textbf{A}^*,\textbf{C}\|(\textbf{T}\oplus \boldsymbol{\Delta}_{\textbf{A}}\|\delta)) \text{ succeeds}$
- lacksquare Set lacksquare lacksquare lacksquare lacksquare



The Attack

•••

```
f Get C||T \leftarrow Enc[\tau_g](N, A, M)
```

i Find $\delta \in \{\mathbf{0},\mathbf{1}\}^{\tau_{\mathbf{g}-\mathbf{1}}-\tau_{\mathbf{g}}}$ s.t. $\mathbf{Dec}[\tau_{\mathbf{g}}](\mathbf{N},\mathbf{A}^*,\mathbf{C}\|(\mathbf{T}\oplus\delta))$ succeeds

n Output forgery $\mathbf{N}, \mathbf{A}^*, \mathbf{C} \| (\mathbf{\Delta}_{\mathbf{A}} \| \delta)$

Gradual Forgery for Ciphertext Translation Complexity

- single encryption query per stretch
- $2^{\tau_i \tau_{i-1}}$ decryption queries stretched by τ_i bits for $1 < i \le \ell$
- 2^{τ_1} decryption queries stretched by τ_1
- Forgery for τ_g bits of stretch with $2^{\tau_g \tau_{g-1}}$ decryption queries stretched by τ_g bits versus the intuition of τ_g bit security

E.g. if $\mathcal{I}_T=\{32,64,96,128\}$, then forging a 128-bit tag takes $4\cdot 2^{32}$ decryption queries in total

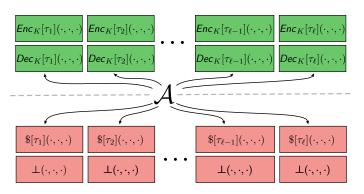
Gradual Forgery for Ciphertext Translation Applicability

- ▶ If no countermeasures OR τ in nonce \Rightarrow works for arbitrary H_K ▷ OTR
- If \(\tau \) in AD (or in both AD and nonce) ⇒ works for H_K like below
 ▷ Deoxys, OCB, GCM



Capturing AEAD Security with Variable Tags

- $\Pi = (\mathsf{Enc}, \mathsf{Dec}, \mathcal{K})$ defined with $\tau \in \mathcal{I}_T = \{\tau_1, \tau_2, \dots, \tau_\ell\}$
- Distinguishing all instances: not capturing intuition

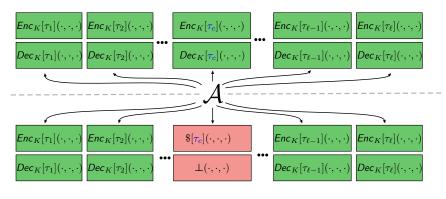


- $ightharpoonup \mathcal{A}$ can always win with $2^{\min \mathcal{I}_T}$ queries (conservative evaluation)
- Interactions between stretches not captured

Capturing AEAD Security with Variable Tags: $nvae(\tau_c)$

fixed but arbitrary "challenge" stretch τ_c :

- Unique nonces for (nonce,stretch) pairs
- ullet Only non-trivial forgeries stretched by au_c bits



$$\mathbf{Adv}_{\Pi}^{\mathit{nvae}(\tau_c)}(\mathcal{A}) = \mathsf{Pr}\left[\mathcal{A}^{\mathsf{top}\;\mathsf{system}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathcal{A}^{\mathsf{lower}\;\mathsf{system}} \Rightarrow 1\right]$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 15 / 22

$nvae(\tau_c)$

Adversarial Resources

Default resources:

- Time t
- For **every** value of stretch $\tau \in \mathcal{I}_T$ watch:
 - Number of encryption queries q_e^T
 - Number of decryption queries q_d^T
 - Amount of data σ^{τ}

Fine granularity, flexibility and generality

Default resources:

- Time t
- For **every** value of stretch $\tau \in \mathcal{I}_T$ watch:
 - Number of encryption queries q_e^τ
 - Number of decryption queries q_d^T
 - Amount of data σ^{τ}

Fine granularity, flexibility and generality

Coarser granularity best in most cases:

- ullet Total number of encryptions $q_{ullet} = \sum_{ au \in \mathcal{I}_{ au}} q_{ullet}^{ au}$
- Total number of decryptions $q_d = \sum_{\tau \in \mathcal{I}_T} q_d \tau$
- Total amount of data $\sigma = \sum_{\tau \in \mathcal{I}_{\tau}} \sigma_{\mathsf{d}} \tau$
- Keep $q_e^{\tau_c}, q_d^{\tau_c}, \sigma^{\tau_c}$ apart

$nvae(au_c)$

Capturing AEAD Security with Variable tags?

- ullet Only distinguishable by queries stretched by au_c
 - **E.g.** forging with min $\mathcal{I}_{\mathcal{T}}$ bits of stretch alone does not help
- Queries stretched by $\tau \neq \tau_c$ bits can still help
 - Both truncation and gradual forgery attacks advantage= 1
 - Truncation: single decryption with stretch τ_c
 - Gradual: resources depend on other stretch values

$nvae(\tau_c)$

Capturing AEAD Security with Variable tags?

- ullet Only distinguishable by queries stretched by au_c
 - **E.g.** forging with min $\mathcal{I}_{\mathcal{T}}$ bits of stretch alone does not help
- Queries stretched by $au
 eq au_c$ bits can still help
 - Both truncation and gradual forgery attacks advantage= 1
 - Truncation: single decryption with stretch τ_c
 - Gradual: resources depend on other stretch values

Good advantage?

$$\mathsf{Adv}_{\mathsf{\Pi}}^{nvae(\tau_c)} \leq \text{``small''} + c \cdot (q_d^{\tau_c})^{\alpha}/2^{\tau_c}$$

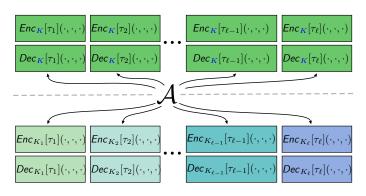
"small" due to construction, no direct dependence on au_c

E.g. "small"= $\mathbf{Adv}_{\mathsf{B}}^{prp}(t,\sigma) + \sigma^2/2^n$ with B an *n*-bit blockcipher

Achieving nvAE Modularly

Key-Equivalent Separation by Stretch

- ▶ Working with stretch space $\mathcal{I}_T = \{\tau_1, \tau_2, \dots, \tau_\ell\}$
- Encryptions with fresh nonces per stretch



$$\mathbf{Adv}^{kess}_\Pi(\mathcal{A}) = \text{Pr}\left[\mathcal{A}^{\text{top system}} \Rightarrow \mathbf{1}\right] - \text{Pr}\left[\mathcal{A}^{\text{lower system}} \Rightarrow \mathbf{1}\right]$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 18 / 22

Achieving nvAE Modularly

Key-Equivalent Separation by Stretch

Low kess advantage \neq AE security, but for any AEAD scheme Π with stretch space $\mathcal{I}_{\mathcal{T}} = \{\tau_1, \tau_2, \dots, \tau_\ell\}$:

$$\mathbf{Adv}_{\Pi}^{\mathit{nvae}(\tau_{c})}(t, \mathbf{q_{e}}, \mathbf{q_{d}}, \sigma) \leq \mathbf{Adv}_{\Pi}^{\mathit{kess}}(t', \mathbf{q_{e}}, \mathbf{q_{d}}, \sigma) + \mathbf{Adv}_{\Pi[\tau_{c}]}^{\mathit{aead}}(t'', \textit{q_{e}^{\tau_{c}}}, \textit{q_{d}^{\tau_{c}}}, \sigma^{\tau_{c}})$$

where $\Pi[\tau_c]$ is Π used with τ_c -bit stretch, and

- $\mathbf{q_e}$ the encryption query complexities $(q_e^{ au}| au\in\mathcal{I}_{\mathcal{T}})$
- $\mathbf{q_d}$ the decryption query complexities $(q_d^{ au}| au\in\mathcal{I}_{\mathcal{T}})$
 - σ the data complexities $(\sigma^{\tau}|\tau\in\mathcal{I}_{T})$

► Easier analysis if AEAD security already established!

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 18 / 22

Proof of concept:

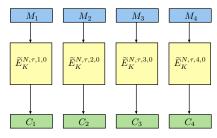
vOCB, OCB modified to be nvAE secure

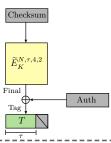
- Add τ as tweak component in all tweaks
- Show kess security (easy with TBC!)
- AE security inherited

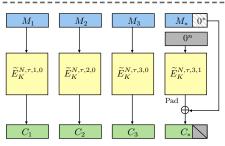
Beyond proof of concept:

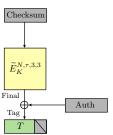
- Modification independent of scheme
- kess security easy to show
- nvAE security automatic
- Can treat also OTR, Deoxys etc.

v⊝CB

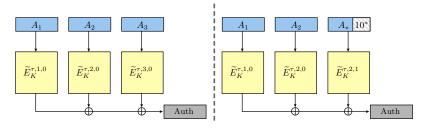








v⊝CB



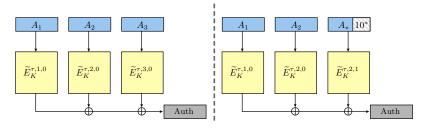
With a suitable tweakable blockcipher \widetilde{E}

▶ With modified XEX (small impact on performance):

$$\mathbf{Adv}_{\mathsf{vOCB}[E]}^{\mathit{nvae}(\tau_c)}(t, \mathbf{q_e}, \mathbf{q_d}, \sigma) \leq (|\mathcal{I}_{\mathcal{T}}| + 2) \cdot \mathbf{Adv}_{E}^{\pm \mathit{prp}}(t', 2q) + \frac{28.5q^2}{2^n} + q_d^{\tau_c} \cdot \frac{2^{n - \tau_c}}{2^n - 1}$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 20 / 22

v⊝CB



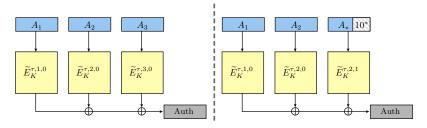
With a suitable tweakable blockcipher \widetilde{E}

▶ With modified XEX (small impact on performance):

$$\mathbf{Adv}_{\mathsf{vOCB}[E]}^{\mathit{nvae}(\tau_c)}(t, \mathbf{q_e}, \mathbf{q_d}, \sigma) \leq (|\mathcal{I}_{\mathcal{T}}| + 2) \cdot \mathbf{Adv}_{E}^{\pm \mathit{prp}}(t', 2q) + \frac{28.5q^2}{2^n} + q_d^{\tau_c} \cdot \frac{2^{n-\tau_c}}{2^n-1}$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 20 / 22

v⊝CB



With a suitable tweakable blockcipher \widetilde{E}

▶ With modified XEX (small impact on performance):

$$\mathbf{Adv}_{\mathsf{vOCB}[E]}^{\mathit{nvae}(\tau_c)}(t, \mathbf{q_e}, \mathbf{q_d}, \sigma) \leq (|\mathcal{I}_{\mathit{T}}| + 2) \cdot \mathbf{Adv}_{\mathit{E}}^{\pm \mathit{prp}}(t', 2q) + \frac{28.5q^2}{2^n} + q_d^{\tau_c} \cdot \frac{2^{n - \tau_c}}{2^n - 1}$$

D. Vizár (EPFL) Variable Stretch-AE DIAC 2016 20 / 22

Conclusions

- AEAD schemes "insecure" with variable stretch
 - Even with ad-hoc counter measures
- We define what it means to be secure ©
- We determine relations with existing notions (backup slide!)
- We show that
 - nvAE security can be achieved ©
 - Schemes based on tweakable primitives easily patched <a>©
- Other schemes?
 - \blacksquare Other classes of schemes easily fixed, e.g. encoding τ in nonce works for sponges
 - Generic transformation: open problem

Questions?

Thank you for your attention!

Relations among Notions

Variable-stretch AE notions

Conventional AE notions

$$\begin{array}{c} \mathbf{rae} \\ \mathsf{h} \not \downarrow \mathsf{i} \\ \mathbf{kess} \land \mathbf{nae} & \xrightarrow{\mathsf{g}} \mathbf{nvae}(\tau_{\mathbf{c}}) \xrightarrow{\mathsf{d}} \mathbf{priv}(\tau_{\mathbf{c}}) \land \mathbf{auth}(\tau_{\mathbf{c}}) \xrightarrow{\mathsf{c}} \mathbf{priv} \land \mathbf{auth} \xrightarrow{\mathsf{a}} \mathbf{nae} \\ & \downarrow \mathsf{b} \\ \mathbf{ind} - \mathbf{cca}(\tau_{\mathbf{c}}) & \mathbf{ind} - \mathbf{cca} \end{array}$$

Previous works: a [Rogaway, Shrimpton 06] b [Bellare, Namprempre 00] This work: c, d, e, f, g, h, i

Extending XEX

- $\bullet \ \ \text{Label every } \tau \in \mathcal{I}_{\mathcal{T}} \text{ bijectively with } \lambda: \mathcal{I}_{\mathcal{T}} \to \{0,1,\ldots,|\mathcal{I}_{\mathcal{T}}|-1\}.$
- Compute $m = \lceil \log_2 |\mathcal{I}_T| \rceil$ and
 - $L_* = E_K(0^n)$
 - $L_{\tau} = \lambda(\tau) \cdot 2^2 \cdot L_*$ for $\tau \in \mathcal{I}_T$
 - $L(0) = 2^{2+m} \cdot L_*$
 - $L(\ell) = 2 \cdot L(\ell 1)$ for $\ell > 0$.
- Compute Δ-values:

$$\Delta_{N,0,0,0} = H(K,N),$$
 $\Delta_{N,\tau,0,0} = \Delta_{N,0,0,0} \oplus L_{\tau},$
 $\Delta_{N,\tau,i+1,0} = \Delta_{N,\tau,i,0} \oplus L(\operatorname{ntz}(i+1)) \text{ for } i \geq 0,$
 $\Delta_{N,\tau,i,j} = \Delta_{N,\tau,i,0} \oplus j \cdot L_* \text{ for } j \in \{0,1,2,3\},$
 $\Delta_{\tau,0,0} = L_{\tau},$
 $\Delta_{\tau,i+1,0} = \Delta_{\tau,i,0} \oplus L(\operatorname{ntz}(i+1)) \text{ for } i \geq 0,$
 $\Delta_{\tau,i,j} = \Delta_{\tau,i,0} \oplus j \cdot L_* \text{ for } j \in \{0,1,2,3\}.$

A call to \widetilde{E} is evaluated as follows:

$$\widetilde{E}_{K}^{N,\tau,i,j}(X) = E_{K}(X \oplus \Delta_{N,\tau,i,j}) \oplus \Delta_{N,\tau,i,j}, \ \ \text{or} \ \ \widetilde{E}_{K}^{\tau,i,j}(X) = \qquad E_{K}(X \oplus \Delta_{\tau,i,j}).$$