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Single-Key vs. Multi-Key

1. Single-key setting usually
analyzed

2. Multi-key setting is
practically important

3. Example: AES-GCM used in
TLS, hundreds of millions of
keys used
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Folklore Result and Multi-Key Degradation

Multi-Key Success Probability

≤

u× Single-Key Success Probability
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Example : Block Ciphers
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Example: AES128 Key Recovery
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Block Cipher Multi-key Attack

Precomputation:

(L,EL(P))

Queries:

EK1(P),EK2(P), . . . ,EKu(P) .

Compare precomputed ciphertext with received ciphertext

Biham 2002 Information Processing Letters

Biryukov, Mukhopadhyay, Sarkar, SAC 2005: time-memory-data
trade-off
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Example: GCM
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GCM Bound in the Multi-Key Setting
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AES128 Multikey vs. GCM Multikey
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Our Work

1. Set out to understand gap

2. Characterization of
multi-key setting: necessary
and sufficient condition for
degradation

3. Proved in abstract setting,
applied to GCM
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Slot Machine Scenario

EK
Slot Machine
Random Seed

Gambler

1. Data complexity = money

2. Success = jackpot

3. Single-key setting = access
to one slot machine
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Casino Setting

500 coin budget

, 100 slot machines
all 500 coins on 1 machine

vs
500 coins distributed somehow over 100 machines

“spending 500 coins on 100 slot machines gives you factor 100
higher success than spending 500 coins on one slot machine”

Counter-intuitive, ever possible? Yes.

1. Assume slot machine is “lucky” with some probability

2. One slot machine: either lucky or not.

3. One hundred slot machines: find lucky machine, focus on that
one
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Lucky Machines in Cryptography

Weak keys

Midori64: 232 weak keys out of 2128, identifiable with one query
(Guo et al. 2015)

Weak-key recovery: computational complexity 216, data complexity
2.

Table: Midori64 key recovery

u = 1 u = 216

Computational cost 216 217

Data cost 2 u + 2
Success Estimate 2−96 2−80
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2. Exploit Weak instances if present

3. What else can happen?
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Necessary and Sufficient Condition

Setting 1
One slot machine

300 coins

Setting 2
One slot machine

300 coins
Friend has played on slot
machine with 200 coins

Gives you history

If

Setting 1 Jackpot probability ≤ Setting 2 Jackpot probability

for all histories below some cost

then no advantage interacting with multiple slot machines
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Lucky Machines Excluded

Setting 1
One slot machine

Setting 2
One slot machine

Friend tells you the machine is
not lucky

Setting 1: possibility of interacting with lucky machine
⇒ jackpot probability might be higher
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Translation to Oracles and Games

Setting 1
An oracle and game
maximum q queries

Setting 2
An oracle and game
maximum q queries

A transcript representing past
history

If

Setting 1 Adversarial Sucess ≤
Setting 2 Adversarial Success given transcript is satisfied

for all transcripts below some cost

then no advantage interacting with multiple oracle instances
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Proof Intuition

1. Optimal adversaries gain no advantage in having one oracle’s
inputs depend on another oracle’s outputs

2. Adversary interacts with two oracles, makes a query to one of
them

3. It has information on one of them ⇒ better to stick to that
oracle

Converse

1. There is a “bad” transcript for which it is better to start over

2. Attack one oracle, if bad transcript, switch to another oracle.

This is only intuition, proper formalization introduces subtleties!
(Information-theoretic setting, adversaries must be optimal, queries

are bounded,. . . )
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GCM has no Multi-Key Degradation
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Summary

1. Multi-Key setting is important

2. Generic attacks against block ciphers, but not against modes

3. Weak key attack

4. Characterization of multi-key setting

Open problem: ideal primitive settings?

Thank you for your attention.
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