

September 28, 2016 @ASK2016

Nonlinear Invariant Attack

NTT Secure Platform Laboratories and Kobe University Yosuke Todo

Copyright©2016 NTT corp. All Rights Reserved.

Overview.

- Joint work with Gregor Leander and Yu Sasaki.
- New type of cryptanalyses.
 - This attack works on the weak-key setting.
- Surprising practical extensions.
 - Ciphertext-only message recovery attack!!
- Good applications.
 - Scream, iScream, and Midori64.

Distinguishing attack under known-plaintext setting.

Target	# of weak keys	Data complexity.	Distinguishing probability.
SCREAM	2 ⁹⁶		
iSCREAM	2 ⁹⁶	k	$1 - 2^{1-k}$
Midori64	2 ⁶⁴		

The distinguishing attack incidentally recovers 1 bit of secret key.

Message-recovery attack under ciphertext-only setting.

Target	# of weak keys	Maximum # of recovered bits.	Data complexity.	Time complexity.
SCREAM	2 ⁹⁶	32 bits	33 ciphertexts	$32^3 = 2^{15}$
iSCREAM	2 ⁹⁶	32 bits	33 ciphertexts	$32^3 = 2^{15}$
Midori64-CTR	2 ⁶⁴	32h bits	33h ciphertexts	$32^3h = 2^{15}h$

h is the number of blocks in the mode of operations.

Outline

1. Nonlinear invariant attack.

- Map of related attacks.
 - Linear and nonlinear cryptanalyses.
 - Invariant subspace attack.
- Distinguishing attack.
- 2. Surprising extension toward practical attack.
 - What's happened if vulnerable ciphers are used in wellknown mode of operations?
- 3. How to find nonlinear invariant.
 - Appropriate nonlinear invariants.
 - How to find nonlinear invariant for KSP round functions.
- 4. Practical attack on full SCREAM.

Two streams join in new attacks.

Nonlinear invariant attack [Todo, Gregor, Yu 2016]

Stream from linear attacks.

Linear attack [Matsui 1993]

Nonlinear attack [Harpes et al. 1995]

Invariant subspace attack [Gregor et al. 2011]

Nonlinear invariant attack [Todo, Gregor, Yu 2016]

Innovative R&D by NTT

Key-alternating structure.

Nonlinear attack [Harpes et al.95].

Key-alternating structure.

Innovative R&D by NTT

Key-alternating structure.

- The actual propagation of nonlinear mask depends on the **specific value** of the state.
- Therefore, we cannot join nonlinear masks for two rounds.

Nonlinear invariant attack.

Linear attack [Matsui 1993] Nonlinear attack [Harpes et al. 1995]

Invariant subspace attack [Gregor et al. 2011]

Nonlinear invariant attack [Todo, Gregor, Yu 2016]

Invariant subspace attacks

Nonlinear invarinat attack.

Nonlinear invarinat attack.

- If the block cipher has the nonlinear invariant, we can easily distinguish from ideal ciphers.
- 1. Collect k known plaintexts (p_i, c_i) .
- 2. Compute $g_p(p_i) \oplus g_c(c_i)$ for k pair. Then k XORs are always the same. The probability that ideal ciphers have this property is 2^{-k+1} .
- At most one bit of information leaks from $g_p(p_i) \bigoplus g_c(c_i)$.

Outline

- 1. Nonlinear invariant attack.
 - Map of related attacks.
 - Linear and nonlinear cryptanalyses.
 - Invariant subspace attack.
 - Distinguishing attack.
- 2. Surprising extension toward practical attack.
 - What's happened if vulnerable ciphers are used in wellknown mode of operations?
- 3. How to find nonlinear invariant.
 - Appropriate nonlinear invariants.
 - How to find nonlinear invariant for KSP round functions.
- 4. Practical attack on full SCREAM.

Practical attacks.

Assumption.

strong

Chosen-plaintext attacks (CPA)

- > is natural assumption for cryptographers.
- > is debatable in practical case.

Known-plaintext attacks (KPA)

- is very weak assumption for cryptographers.
- sometimes holds in practical case.

Ciphertext-only attacks (COA)

- > is unlikely to happen for cryptographers.
- is information-theoretically impossible w/o assumptions.
 - > causes non-negligible risks in practical use if possible.

weak

- Innovative R&D by NTT
- Attackers can collect multiple ciphertext blocks whose original message is the same but the IV is different.
- Then, we can recover the part of message.

- It's very difficult questions because it depends on applications.
- We believe it's more practical than KPA.
- Example of vulnerable application.
 - Application sometimes sends the ciphertext of a password for the authentication. And, attackers know the behavior of the application.

CBC mode.

If E_k has nonlinear invariants, $g_p(C_{i-1} \bigoplus P_i) \bigoplus g_c(C_i) = \text{const}$

- Attackers know IV and ciphertexts, and $g_p(C_{i-1} \oplus P_i) \oplus g_c(C_i)$ is always constant.
- We collect multiple (C_{i-1}, C_i) whose corresponding P_i is the same.
- By guessing P_i , we can recover it only from ciphertexts.
 - Bits of P_i that involve the nonlinear term of the function g can be recovered.
 - Practically, the time complexity to recover t bits of P_i is at most t^3 .

Outline

- 1. Nonlinear invariant attack.
 - Map of related attacks.
 - Linear and nonlinear cryptanalyses.
 - Invariant subspace attack.
 - Distinguishing attack.
- 2. Surprising extension toward practical attack.
 - What's happened if vulnerable ciphers are used in wellknown mode of operations?
- 3. How to find nonlinear invariant.
 - Appropriate nonlinear invariants.
 - How to find nonlinear invariant for KSP round functions.
- 4. Practical attack on full SCREAM.

Nonlinear invariant attack.

We have to search for nonlinear invariants that hold in arbitrary number of rounds.

Nonlinear invariant attack.

Searching for nonlinear invariants.

• Assume that KSP-type round function.

Innovative R&D by NT1

Nonlinear invariants for S-box.

 Because the bit size of S-boxes is generally small, it's not difficult to find nonlinear invariant for S-boxes.

Innovative R&D by NT

• Nonlinear invariant for the S-box in Scream. $g(x) = x_1 x_2 \oplus x_0 \oplus x_2 \oplus x_5$ Then, for all $x \in \mathbb{F}_2^8$, $g(x) = g(S(x)) \oplus 1$.

• Nonlinear invariant for the S-box in Midori64. $g(x) = x_2 x_3 \bigoplus x_0 \bigoplus x_1 \bigoplus x_2$ Then, for all $x \in \mathbb{F}_2^4$, g(x) = g(S(x)).

Nonlinear invariant for S-box layer.

• If the function g_i is nonlinear invariant for the *i*th S-box, the function $\bigoplus_{i \in \Lambda} g_i(x_i)$ becomes nonlinear invariant for the S-box layer for any set Λ .

Innovative B&D by N

- If "1s" in k are involved in only linear term of the function $g, g(x \oplus k) = g(x) \oplus g(k)$.
- $g(x) \oplus g(x \oplus k) = g(k) = \text{cons.}$

Innovative R&D by NT

• Nonlinear invariant for the S-box in Scream. $g(x) = x_1 x_2 \bigoplus x_0 \bigoplus x_2 \bigoplus x_5$ If $k_1 = k_2 = 0$, $g(x \bigoplus k) = g(x) \bigoplus g(k)$

• Nonlinear invariant for the S-box in Midori64. $g(x) = x_2 x_3 \bigoplus x_0 \bigoplus x_1 \bigoplus x_2$ If $k_2 = k_3 = 0$, $g(x \bigoplus k) = g(x) \bigoplus g(k)$

Nonlinear invariant for linear layer.

 If the linear function is binary orthogonal and there is a quadratic invariant for the S-box,
 ⊕ gⁿ_{i=1}(x_i) is nonlinear invariant for the linear layer.

Innovative B&D by N

• Let \tilde{x}_i be the bit-string by concatenating *i*th input of all S-boxes. Then, the quadratic invariant is represented as $\bigoplus_{i=1}^n g_i(x_i) = \bigoplus_{i=1}^m \bigoplus_{j=1}^m \gamma_{i,j} \langle \tilde{x}_i, \tilde{x}_j \rangle$

 χ_i

 Let x
_i be the bit-string by concatenating ith input of all S-boxes. Then, the quadratic invariant is represented as

$$g(x) = \bigoplus_{i=1}^{n} g_i(x_i) = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{m} \gamma_{i,j} \langle \tilde{x}_i, \tilde{x}_j \rangle$$

• Let *M* be the binary orthogonal matrix, and $g(L(x)) = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{m} \gamma_{i,j} \langle M \tilde{x}_i, M \tilde{x}_j \rangle$ $= \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{m} \gamma_{i,j} \langle \tilde{x}_i, \tilde{x}_j \rangle$ $= \bigoplus_{i=1}^{n} g_i(x_i)$

Outline

- 1. Nonlinear invariant attack.
 - Map of related attacks.
 - Linear and nonlinear cryptanalyses.
 - Invariant subspace attack.
 - Distinguishing attack.
- 2. Surprising extension toward practical attack.
 - What's happened if vulnerable ciphers are used in wellknown mode of operations?
- 3. How to find nonlinear invariant.
 - Appropriate nonlinear invariants.
 - How to find nonlinear invariant for KSP round functions.
- 4. Practical attack on full SCREAM.

- AE proposed for CAESAR.
- LS-design with an orthogonal matrix.
- The secret key is directly used as round keys.
- The round constant is XORed with only \tilde{x}_0 .

- Nonlinear invariant for Scream. $g(x) = \langle \tilde{x}_1, \tilde{x}_2 \rangle \bigoplus |\tilde{x}_0| \bigoplus |\tilde{x}_2| \bigoplus |\tilde{x}_5|$
- Since \tilde{x}_0 is linearly affected by the function g, the distributive law holds for addConst.

-
$$g(x \oplus rc) = g(x) \oplus g(rc)$$
.

• If \tilde{k}_1 and \tilde{k}_2 of the secret key are zero (weak keys), the distributive law holds for addRK.

-
$$g(x \oplus k) = g(x) \oplus g(k)$$
.

• SCREAM authenticated encryption.

Innovative R&D by NT

Innovative R&D by NTT

• SCREAM authenticated encryption.

Distinguishing attack under known-plaintext setting.

Target	# of weak keys	Data complexity.	Distinguishing probability.
SCREAM	2 ⁹⁶		
iSCREAM	2 ⁹⁶	k	$1 - 2^{1-k}$
Midori64	2 ⁶⁴		

Message-recover attack under ciphertext-only setting.

Target	# of weak keys	Maximum # of recovered bits.	Data complexity.	Time complexity.
SCREAM	2 ⁹⁶	32 bits	33 ciphertexts	$32^3 = 2^{15}$
iSCREAM	2 ⁹⁶	32 bits	33 ciphertexts	$32^3 = 2^{15}$
Midori64-CTR	2 ⁶⁴	32h bits	33h ciphertexts	$32^3h = 2^{15}h$

h is the number of blocks in the mode of operations.

Conclusion.

- Proposal of nonlinear invariant attack.
- Method to find nonlinear invariants.
- Nonlinear invariant attack on Scream, iScream, and Midori64.
 - We can recover the 32bits of message in the last block on SCREAM (iSCREAM) AEs.
 - We can recover the 32bits of message in every block on CBC, CTR, CFB, OFB modes.

